



# HYDROLOGY REPORT

---

Dixon Diversion Conceptual Study

**Prepared for:**



**Prepared by:**



November 2023

# **DIXON DIVERSION CONCEPTUAL STUDY**

## **HYDROLOGY REPORT**

**PREPARED FOR:**



**ALASKA ENERGY AUTHORITY (AEA)**  
**ANCHORAGE, AK**

**PREPARED BY:**



**NOVEMBER 29, 2023**

`\\dowl.com\j\Projects\36\90090-01\91Rpts\HydrologyReportsAndMemos\202310_DixonDiversionHydrologyReport\Dixon_HydrologyReport.docx`

---

## TABLE OF CONTENTS

---

|                                                            |           |
|------------------------------------------------------------|-----------|
| <b>Executive Summary.....</b>                              | <b>1</b>  |
| <b>1.0      Introduction .....</b>                         | <b>2</b>  |
| 1.1    Project Background.....                             | 2         |
| 1.2    Previous Hydrology Studies .....                    | 2         |
| 1.3    Report Purpose .....                                | 3         |
| <b>2.0      Relevant Basins &amp; Streamflow Data.....</b> | <b>3</b>  |
| 2.1    Streamflow Data .....                               | 5         |
| <b>3.0      Hydrologic Analysis.....</b>                   | <b>6</b>  |
| 3.1    Synthetic Discharge Record .....                    | 6         |
| 3.1.1    Methodology & Background.....                     | 6         |
| 3.1.2    Area Coefficient Regression .....                 | 7         |
| 3.1.3    Synthetic Discharge Record .....                  | 8         |
| 3.2    Flow Duration.....                                  | 10        |
| 3.3    Flood Frequency .....                               | 10        |
| 3.3.1    USGS Methods for Ungaged Streams .....            | 11        |
| 3.3.2    USGS Bulletin 17C .....                           | 11        |
| 3.3.3    Flood Frequency Summary .....                     | 12        |
| 3.4    Mass Balance Comparison .....                       | 13        |
| 3.4.1    Upper Bradley River Mass Balance .....            | 14        |
| 3.4.2    Dixon Creek at Mouth Mass Balance .....           | 17        |
| 3.5    Hydrologic Analysis Summary.....                    | 19        |
| <b>4.0      Diversion Operations Model.....</b>            | <b>20</b> |
| 4.1    Assumptions & Methodology .....                     | 20        |
| 4.2    Results Summary .....                               | 20        |
| <b>5.0      References.....</b>                            | <b>21</b> |

## LIST OF TABLES

|                                                                                                |    |
|------------------------------------------------------------------------------------------------|----|
| Table 1. Summarized Diversion Operational Model Results*                                       | 1  |
| Table 2. Key Basin Drainage Areas.....                                                         | 3  |
| Table 3. Revised Dixon Creek/Upper Bradley River Relationship .....                            | 8  |
| Table 4. Synthetic vs. Measured Dixon Creek at Mouth Streamflow Volume (2023) .....            | 9  |
| Table 5. Dixon Creek at Mouth Flow-Duration Statistics from Synthetic Record.....              | 10 |
| Table 6. Dixon Diversion Basin Characteristics for USGS Peak Flow Regression .....             | 11 |
| Table 7. Dixon Diversion Flood Frequency Using USGS Regression [3] .....                       | 11 |
| Table 8. Bulletin 17C Analysis Results (Dixon Creek at Mouth).....                             | 12 |
| Table 9. 2023 Peak Flows.....                                                                  | 13 |
| Table 10. SNOTEL Site 1037 Comparison to PRISM Precipitation Normals .....                     | 14 |
| Table 11. Nuka Glacier Melt Volume (2014 to 2022) .....                                        | 15 |
| Table 12. Upper Bradley River Mass Balance (2014 to 2022).....                                 | 15 |
| Table 13. Dixon Glacier Melt Volume (2014 to 2022).....                                        | 17 |
| Table 14. Comparison of Dixon Creek Runoff Volume Estimated Using Different Methodologies..... | 20 |
| Table 15. Diversion Operational Model Results (Using Synthetic Record).....                    | 21 |
| Table 16. Diversion Operational Model Results (Using Measured 2023 Data) .....                 | 21 |
| Table 17. Incremental Increase in Diverted Volume with Increased Tunnel Capacity .....         | 21 |

## LIST OF FIGURES

|                                                                                                |    |
|------------------------------------------------------------------------------------------------|----|
| Figure 1. Potential Dixon Diversion Location .....                                             | 2  |
| Figure 2. Basins in the Bradley Lake Area .....                                                | 4  |
| Figure 3. Dixon Creek at Mouth Best-Estimate 2023 Streamflow Record.....                       | 5  |
| Figure 4. Martin River/Dixon Creek Drainage Basins.....                                        | 6  |
| Figure 5. Dixon Creek at Mouth & Upper Bradley River 2023 Flow Comparison.....                 | 7  |
| Figure 6. Regressions for Area Exponents .....                                                 | 8  |
| Figure 7. Dixon Creek at Mouth Synthetic/Measured Discharge Comparison (2023) .....            | 9  |
| Figure 8. Upper Bradley River Streamflow Statistics and 2023 Measured Discharge .....          | 10 |
| Figure 9. Instantaneous Annual Peak Discharge.....                                             | 12 |
| Figure 10. Flood-Frequency Results Comparison .....                                            | 13 |
| Figure 11. SNOTEL Site 1037 – Cumulative Annual Precipitation .....                            | 14 |
| Figure 12. Nuka Glacier Melt Depth Map (2014 to 2022) .....                                    | 16 |
| Figure 13. Dixon Glacier Melt Depth Map (2014 to 2022).....                                    | 18 |
| Figure 14. Dixon Creek at Mouth Runoff Volumes Estimated from Synthetic Discharge Record ..... | 19 |

## LIST OF APPENDICES

|                                                   |
|---------------------------------------------------|
| Appendix A: Streamflow Data Collection Memorandum |
| Appendix B: Operational Model Results             |

## EXECUTIVE SUMMARY

DOWL performed the hydrologic analyses documented in this report for the Dixon Diversion Conceptual Study. To support the analysis, DOWL collected streamflow data for Martin River in 2023 and considered available data from the USGS gage at Dixon Creek (USGS 15238951). Figure 2 shows the location of the Dixon Creek and Martin River streamgages. Dixon Creek is the major tributary of the Martin River, and the Martin River begins just downstream of the Dixon Creek streamgage (i.e., downstream of the Red Lake Basin Outlet). Dixon Creek at the Mouth (A.K.A. "East Fork Canyon Outlet") is a good place to evaluate streamflow for the potential Dixon Diversion given its proximity to the potential diversion location.

DOWL previously investigated the hydrology of the Dixon Diversion Basin based on area relationships between the USGS streamgage for the Upper Bradley River (A.K.A. "Nuka Glacier") and documented the initial findings in a technical memorandum in March 2022. This report builds upon the methodologies presented in the March 2022 memorandum and includes the following:

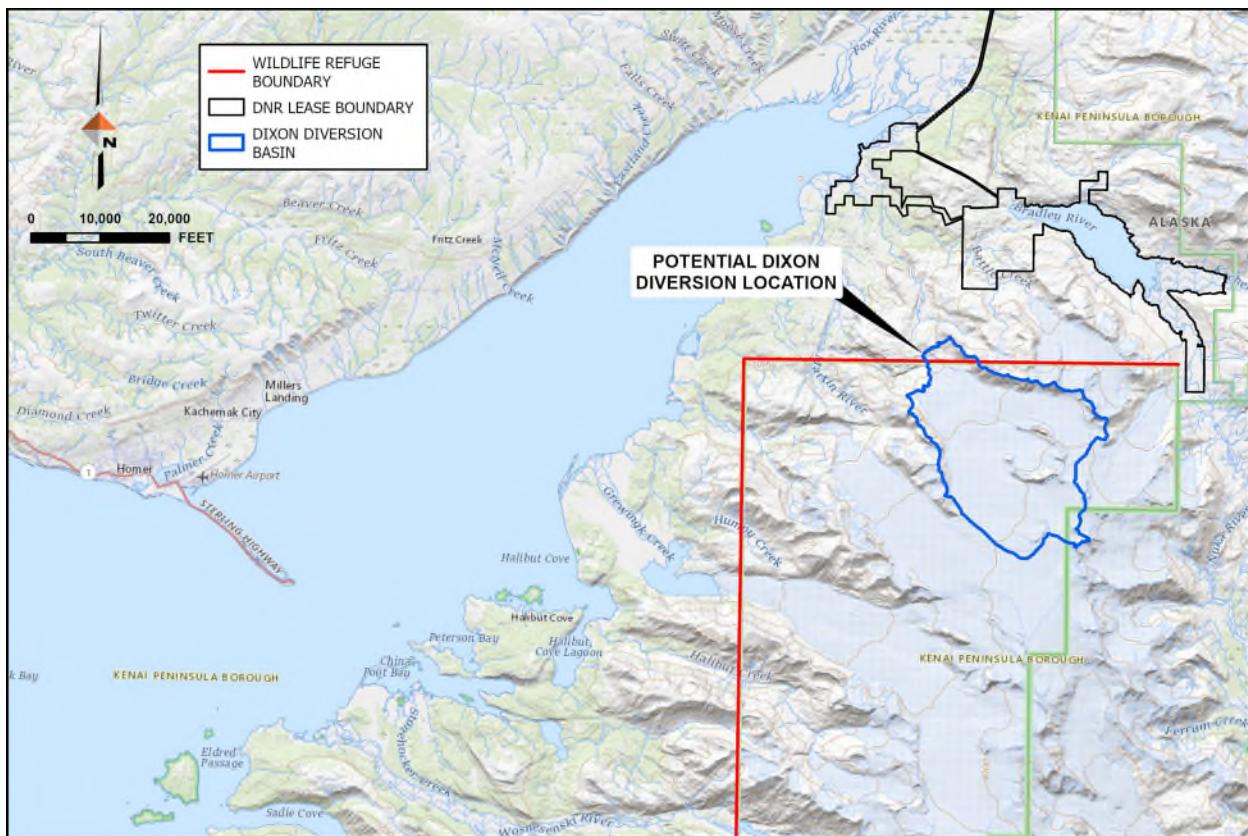
- A synthetic discharge record for Dixon Creek at the Mouth, based on Upper Bradley River near Nuka Glacier discharge measurements and discharge measurements collected in the in 2023 for the Martin River
- Flow-duration statistics for Dixon Creek at the Mouth
- A flood-frequency analysis for Dixon Creek at the Mouth
- A mass balance analysis of Dixon Creek at the Mouth, adjusted to known values for Upper Bradley River near Nuka Glacier
- A diversion operations model was used to estimate the average annual runoff volume and potential diversion volumes for different diversion tunnel sizes

The diversion operations model is ultimately the culmination of this report. Table 1 presents the summarized model results. Based on the 2023 analysis performed, a tunnel size achieving between 1,000 and 1,400 cfs appears to achieve a reasonable balance between size and cost.

**Table 1. Summarized Diversion Operational Model Results\***

| Average Annual Runoff Volume (acre-ft) | Tunnel Capacity | Average Annual Diverted Volume (acre-ft) |
|----------------------------------------|-----------------|------------------------------------------|
| 212,200                                | 1,000 cfs       | 147,900                                  |
|                                        | 1,200 cfs       | 158,400                                  |
|                                        | 1,400 cfs       | 165,500                                  |

\*Based on the most recent 20-years of measured streamflow at the Upper Bradley River nr Nuka USGS Streamgage.


DOWL anticipates continuing to measure Martin River streamflow in 2024. As other relevant data become available, such as an "approved" USGS streamflow record for Dixon Creek at the Mouth or precipitation/temperature data for Dixon Glacier, DOWL will update, enhance, and expand the hydrologic analyses to account for the new data. The estimated diversion volumes presented in this report are of the same order of magnitude as the estimates presented in the March 2022 analysis.

## 1.0 INTRODUCTION

### 1.1 PROJECT BACKGROUND

Alaska Energy Authority (AEA) is evaluating the potential expansion of hydroelectric power generation at the Bradley Lake Hydroelectric Project (BLHP). The Dixon Diversion Project would expand BLHP by capturing outflow from the Dixon Glacier, a tributary of the Martin River. Conceptual designs and power-generation methods are the subject of separate reports, and the information presented in this report is specifically related to the amount and timing of water expected to flow past the potential Dixon Diversion location.

Figure 1 shows the potential Dixon Diversion location, which is on lands owned by the State of Alaska. The Dixon Diversion Basin is a 19.1-mi<sup>2</sup> basin predominantly covered by the Dixon Glacier. The basin is located on the west side of the Kenai Mountains and ultimately drains to Kachemak Bay via the Martin River.



**Figure 1. Potential Dixon Diversion Location**

### 1.2 PREVIOUS HYDROLOGY STUDIES

In March 2022, DOWL submitted a technical memorandum regarding Dixon Diversion hydrology based on the limited data available at the time of document submission [1]. At that time, virtually no data were available for the Dixon/Martin River basins. Estimates of streamflow at the Dixon Diversion were based on (1) streamflow data for the Upper Bradley River near Nuka Glacier Basin (an adjacent basin with hydrologically similar characteristics) and (2) mass balance (i.e., water balance) methodology centered on precipitation (snow and rain) data.

DOWL submitted another technical memorandum to AEA in October 2022 that documented a brief analysis of precipitation trends in the area [2]. Statistically relevant year-over-year precipitation trends

are not apparent in the available data, and there does not appear to be a trending increase or decrease in annual precipitation volume over time.

### 1.3 REPORT PURPOSE

Since submitting the above-described memoranda, significantly more data are available for the Dixon/Martin River basins, including streamgage data and glacier melt volume estimates. This report presents DOWL's revised/expanded hydrologic analyses and results for the Dixon Diversion Basin, including:

- Revised estimates of natural streamflow at the potential Dixon Diversion location
  - Average monthly natural streamflow and volume
  - Statistically-expected natural streamflow timing and magnitude (i.e., flow durations)
  - Annual peak flood magnitudes and probabilities of exceedance (i.e., flood frequency)
- Revised estimates of Dixon Diversion operational parameters
  - Minimum instream flow (MIF) rates
  - Diversion flow rates and volumes
  - Maintenance flow events

### 2.0 RELEVANT BASINS & STREAMFLOW DATA

Figure 2 presents a map of the basins in the Bradley Lake area. Basin drainage areas are reported in the figure, and Table 2 repeats the drainage areas for basins important to this study.

**Table 2. Key Basin Drainage Areas**

| Drainage      | Streamgage/Point of Interest                          | Drainage Area (mi <sup>2</sup> ) |
|---------------|-------------------------------------------------------|----------------------------------|
| Martin River  | Potential Dixon Diversion Location                    | 19.13                            |
|               | Dixon Creek at Mouth (USGS 15238951)                  | 22.26                            |
|               | Red Lake Basin Streamgage                             | 3.56                             |
|               | Mid-Reach Lake Basin Streamgage                       | 0.66                             |
|               | Martin River at Constriction (USGS 15238960)          | 31.84                            |
| Bradley River | Upper Bradley River near Nuka Glacier (USGS 15238990) | 11.15                            |

Appendix A includes a technical memorandum documenting the streamgaging performed by DOWL in 2023. DOWL measured streamflow at the following locations:

- Martin River at the Constriction
- Red Lake Basin Outlet
- Mid-Reach Lake Basin Outlet

The USGS is currently establishing a streamgage at Dixon Creek at the Mouth. Although preliminary stage data are available for the Mouth, continuous streamflow data are not currently available for this site. Dixon Creek at the Mouth has proven to be a difficult site to establish a gage at, particularly a difficult site to measure discharge. The USGS has measured streamflow at this site a handful of times and anticipates collecting more measurements to support the development of a USGS-approved rating curve for the site.

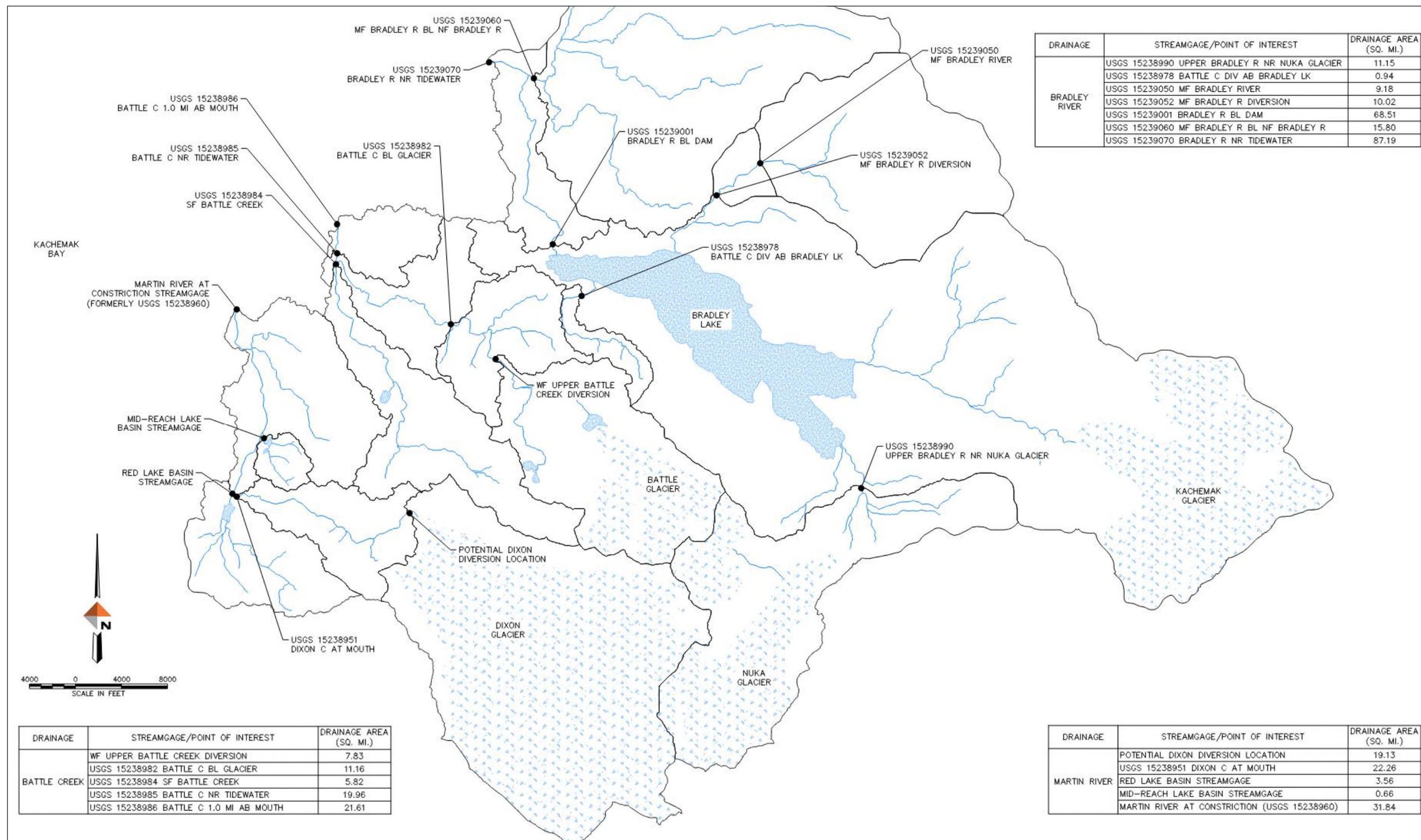



Figure 2. Basins in the Bradley Lake Area

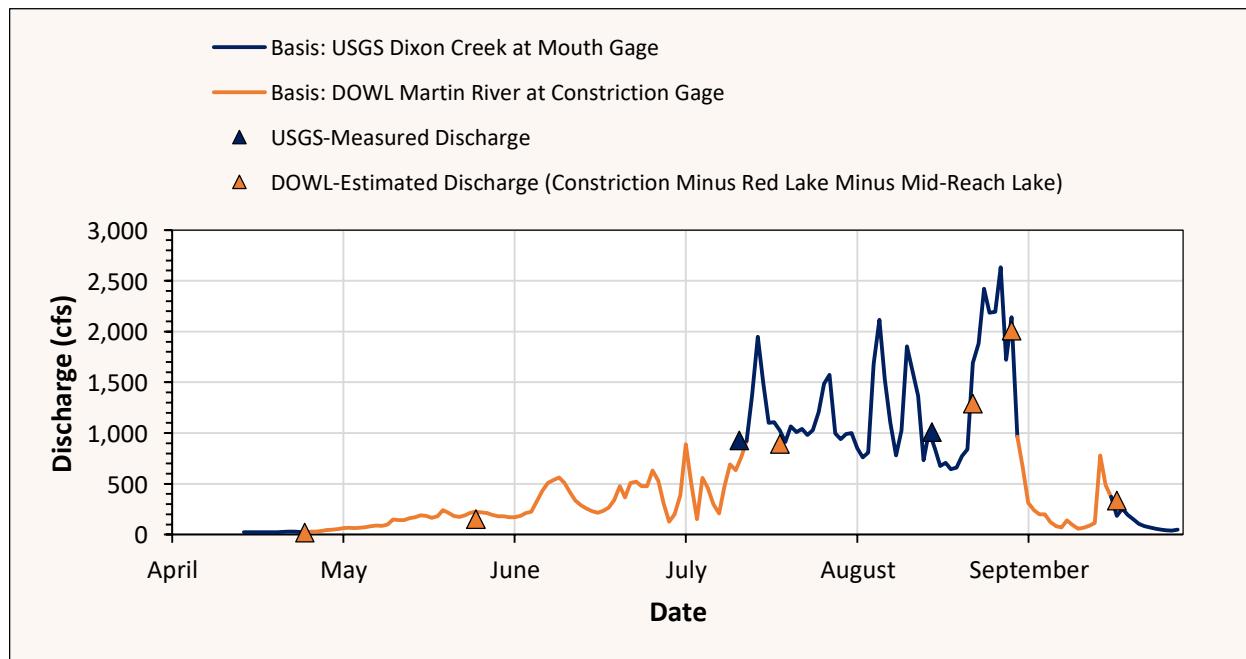
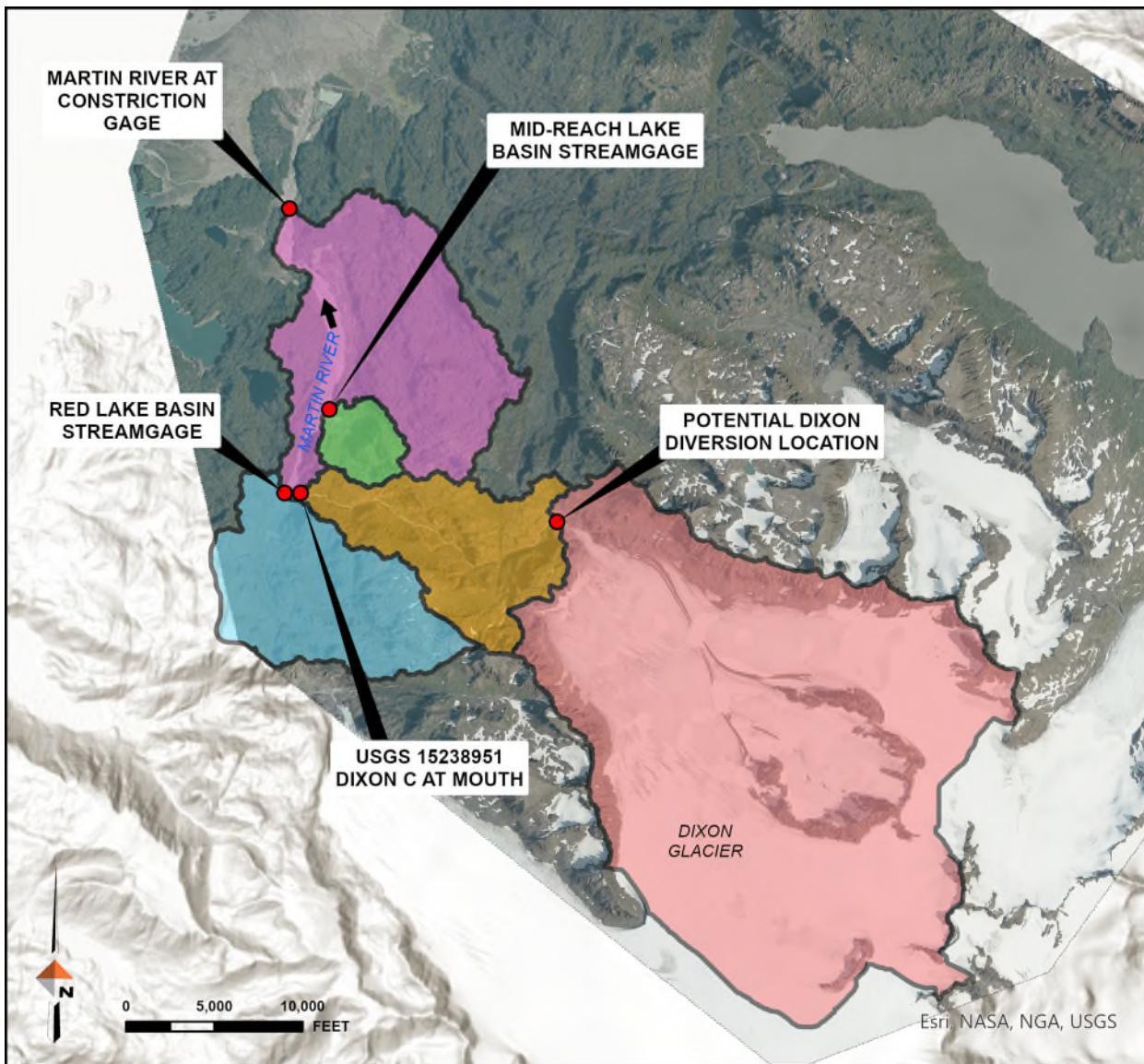

## 2.1 STREAMFLOW DATA

Figure 3 presents the 2023 daily average flow hydrograph for Dixon Creek at the Mouth, which was used as the basis for estimating discharge at the proposed Dixon Diversion location. The technical memorandum in Appendix A details the development of the hydrograph, and Attachment 1 of the memorandum includes tabulated daily average discharges for Dixon Creek at the Mouth, the Martin River at the Constriction, the Red Lake Basin Outlet, and the Mid-Reach Lake Basin Outlet.


Based on data limitations described in the attached memorandum (e.g., data gaps in the DOWL constriction gage record and geomorphologic factors influencing where accurate streamgages can be installed), DOWL developed the hydrograph shown in Figure 3 based on the following assumptions:

- The Dixon Creek at Mouth discharge was estimated by subtracting Red Lake and Mid-Reach Lake Basin discharge from Martin River at Constriction discharge. Inherent in this assumption is that the purple drainage shown in Figure 4 contributes negligibly to Martin River discharge. For comparison purposes, purple area in Figure 4 is a 5.36 mi<sup>2</sup> area, the Red Lake Basin is a 3.56 mi<sup>2</sup> area, and the Red Lake Basin does not contribute significantly to Martin River Discharge. Both the purple drainage area and the Red Lake Basin share relatively similar, non-glaciated, hydrologic characteristics, although Red Lake itself is expected to attenuate discharge in a way that the purple basin does not.
- The Martin River at Constriction streamgage rating curve is based on more measured datapoints than the Dixon Creek at Mouth streamgage rating curve (based on provisional USGS streamflow measurements). Therefore, DOWL assumed that when Martin River at Constriction stage data are available, a more accurate estimate of Dixon Creek at Mouth discharge is provided using the Constriction dataset as the estimate basis.
- For times when Martin River at Constriction discharge data are unavailable, DOWL filled the gaps in the dataset using provisional USGS Dixon Creek at Mouth stage data.

As more data become available (e.g., a USGS-published rating curve for Dixon Creek at the Mouth), DOWL will review and update the discharge record and stage-discharge relationships accordingly.



**Figure 3. Dixon Creek at Mouth Best-Estimate 2023 Streamflow Record**



**Figure 4. Martin River/Dixon Creek Drainage Basins**

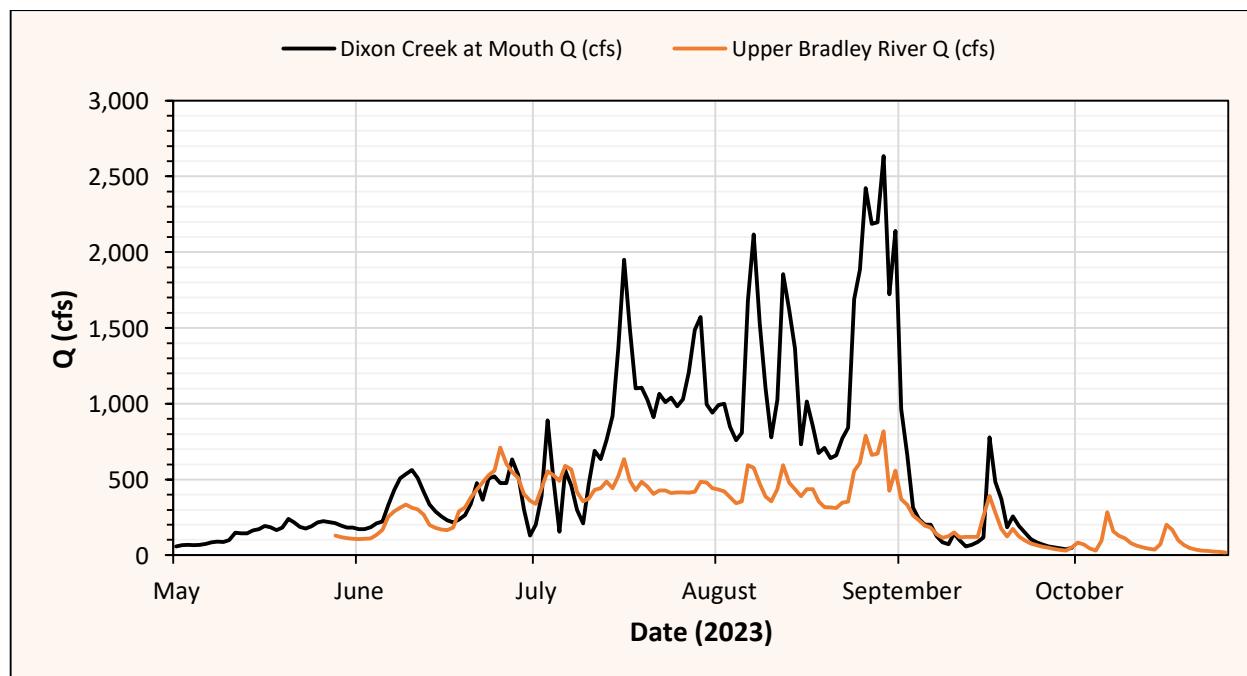
## 3.0 HYDROLOGIC ANALYSIS

The following subsections describe the hydrologic analyses performed by DOWL for the Dixon Diversion Conceptual Study.

### 3.1 SYNTHETIC DISCHARGE RECORD

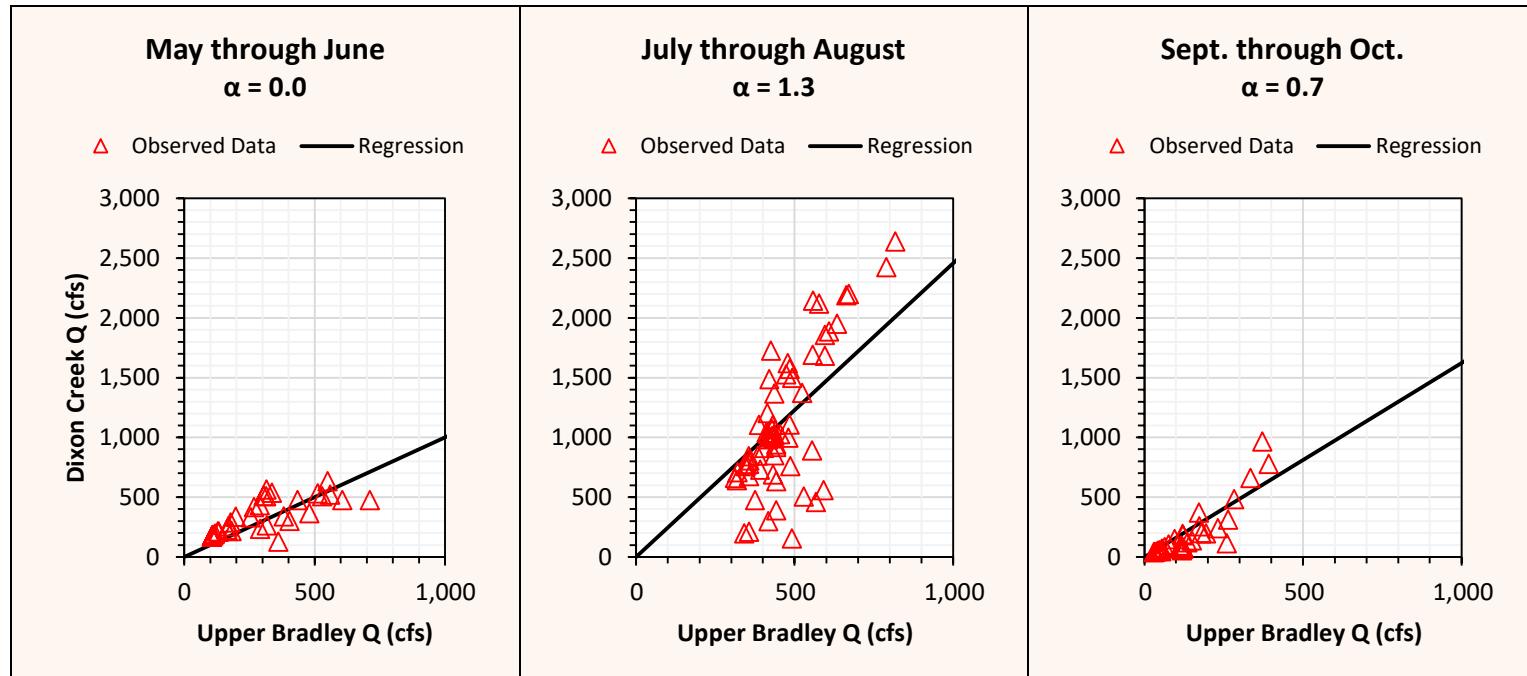
#### 3.1.1 METHODOLOGY & BACKGROUND

In 2022, DOWL established the following relationship to estimate discharge at proposed Dixon Diversion location based on discharge measured at the Upper Bradley River near Nuka Glacier (USGS 15238990):


$$Q_{Dixon} = Q_{Bradley} \left( \frac{A_{Dixon}}{A_{Bradley}} \right)^\alpha$$

In the above equation,  $Q$  = discharge,  $A$  = area, and  $\alpha$  = an area exponent. The discharge estimated using this equation is termed “synthetic discharge.”. When the relationship was initially developed in 2022, no discharge data were available for Dixon Creek at the Mouth, and a constant area exponent was assumed based on “normal” meteorological conditions [3]. Discharge data are now available for Dixon Creek at the Mouth (Figure 3), and DOWL has revised the relationship as described in the following subsections.

### 3.1.2 AREA COEFFICIENT REGRESSION


Figure 5 compares the Dixon Creek at Mouth and Upper Bradley River streamflow measured from May through October 2023. The Upper Bradley River streamgage was not functioning this year until late May, and Dixon Creek streamflow data were unavailable for October when this report was written. Upon inspection of Figure 5, it is apparent that the Dixon Creek/Upper Bradley River relationship is distinctly different during July and August than the rest of the year. Based on this observation, DOWL assumed that the Dixon Creek/Upper Bradley River relationship can be represented using three different area exponents:

1. An area exponent for May 1 through June 30 ( $\alpha_{May-Jun}$ )
2. An area exponent for July 1 through August 31 ( $\alpha_{Jul-Aug}$ )
3. An area exponent for September 1 through October 31 ( $\alpha_{Sep-Oct}$ )



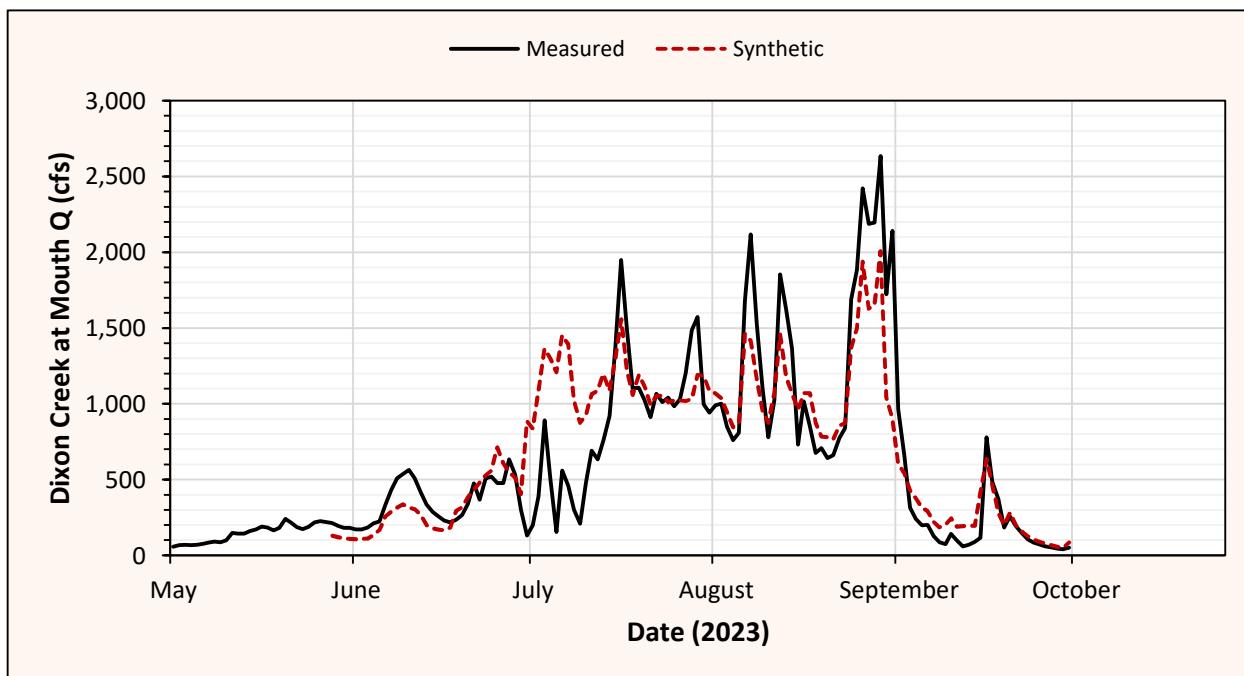
**Figure 5. Dixon Creek at Mouth & Upper Bradley River 2023 Flow Comparison**

Figure 6 presents the regressions performed for each period and the corresponding best-fit area coefficients for each. Table 3 summarizes the revised Dixon Creek/Upper Bradley River relationship. For comparison purposes, the cursory relationship DOWL developed in 2022 was that Dixon Creek discharge equaled 1.6 times the Upper Bradley River discharge.



**Figure 6. Regressions for Area Exponents**

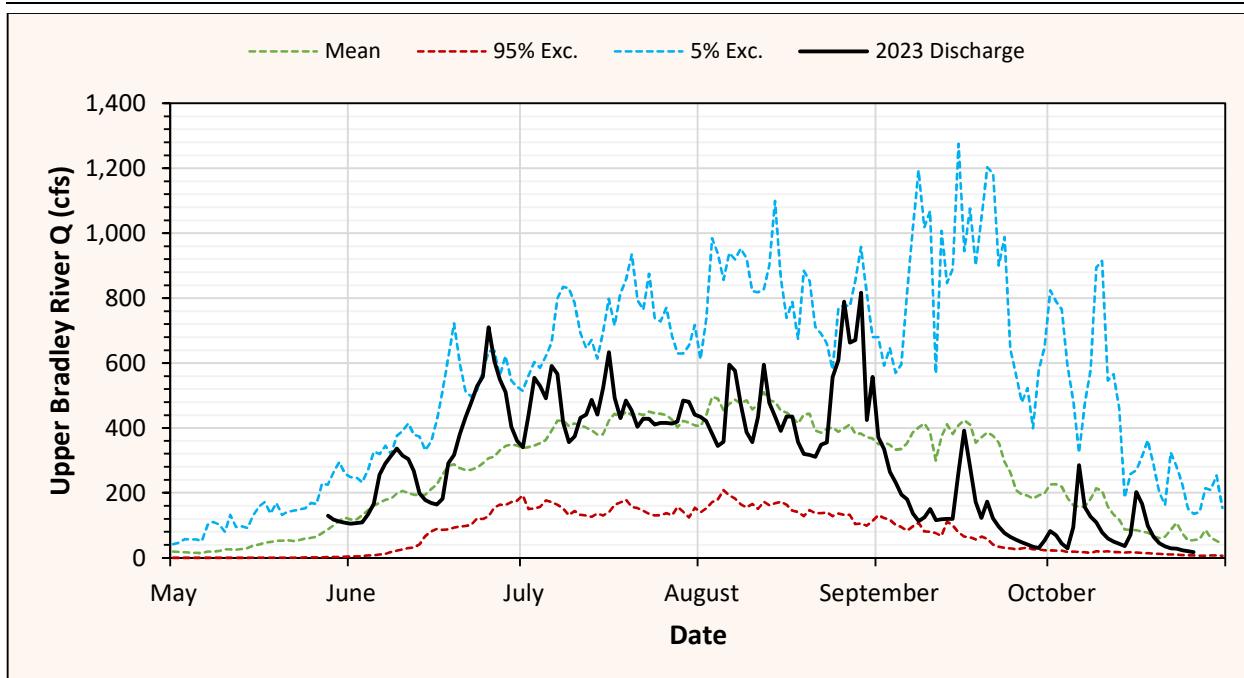
**Table 3. Revised Dixon Creek/Upper Bradley River Relationship**


| Period                         | Area Exponent ( $\alpha$ ) | Relationship                                                                                |
|--------------------------------|----------------------------|---------------------------------------------------------------------------------------------|
| July 1 through August 31       | 0.0                        | $Q_{Dixon} = Q_{Bradley} \left( \frac{22.26}{11.15} \right)^{0.0} = 1.0 \times Q_{Bradley}$ |
| July 1 through August 31       | 1.3                        | $Q_{Dixon} = Q_{Bradley} \left( \frac{22.26}{11.15} \right)^{1.3} = 2.5 \times Q_{Bradley}$ |
| September 1 through October 31 | 0.7                        | $Q_{Dixon} = Q_{Bradley} \left( \frac{22.26}{11.15} \right)^{0.7} = 1.6 \times Q_{Bradley}$ |

### 3.1.3 SYNTHETIC DISCHARGE RECORD

Figure 7 compares the 2023 synthetic discharge to the measured Dixon Creek at Mouth discharge, and Table 4 compares the streamflow volumes estimated from the synthetic discharge record to those calculated using the measured data. The estimated Dixon Creek/Upper Bradley River relationship reasonably agrees with the measured data. DOWL used the revised relationship to develop a synthetic discharge record for Dixon Creek at the Mouth for all years where Upper Bradley River streamflow data are available (i.e., from 1979 to 2023). To reduce file size, the tabulated record is not included with this report, but it is available upon request.

**Table 4. Synthetic vs. Measured Dixon Creek at Mouth Streamflow Volume (2023)**


| Period                         | Streamflow Volume <sup>1</sup> (acre-ft) |           | Percent Difference |
|--------------------------------|------------------------------------------|-----------|--------------------|
|                                | Measured                                 | Synthetic |                    |
| May 1 through June 30          | 23,040                                   | 21,253    | 8% (-)             |
| July 1 through August 31       | 136,222                                  | 139,703   | 2% (+)             |
| September 1 through October 31 | 12,556                                   | 14,778    | 15% (+)            |
| May 1 through October 31       | 171,818                                  | 175,734   | 2% (+)             |


**Figure 7. Dixon Creek at Mouth Synthetic/Measured Discharge Comparison (2023)**

By estimating Dixon Creek streamflow using the above-described correlation, it is inherently assumed that the two watersheds experience similar meteorological and antecedent conditions at the same time, year after year. Sufficient data are not yet available to validate this assumption (e.g., precipitation and temperature data for the Dixon Creek basin/Dixon Glacier). Alaska Pacific University recently installed a meteorological station on Dixon Glacier, and when the data from the station become available, DOWL will incorporate the data in analysis.

Related to the above assumption, DOWL evaluated the potential for an anomalously low or high 2023 water year to skew the synthetic flow record for the Dixon Creek at Mouth. As shown in Figure 8, the Upper Bradley River discharge measured in 2023 is relatively near the historical mean (especially during the higher-flow months of July and August), which suggests that 2023 is a good year to use as the basis of correlation between Dixon Creek and the Upper Bradley River (assuming Dixon Creek and the Martin River also experienced normal water years). As more Dixon Creek streamflow data become available, the margin for error in the correlation between the Upper Bradley River discharge and the Dixon Creek discharge will decrease, and our confidence in the analysis will increase.

<sup>1</sup> The streamflow volume amount shown in this table only includes volume for days where both synthetic and measured discharge are available (i.e., excluding May 1 through May 27 and October 1 through October 31).



**Figure 8. Upper Bradley River Streamflow Statistics and 2023 Measured Discharge**

### 3.2 FLOW DURATION

Table 5 presents flow-duration statistics calculated using the Dixon Creek at Mouth synthetic record (from 1979 to 2023). Flow-duration statistics are generally useful for agencies to establish instream flows and make fisheries decisions.

**Table 5. Dixon Creek at Mouth Flow-Duration Statistics from Synthetic Record**

| Month     | Dixon Creek at Mouth Discharge (cfs) |                |                         |               |
|-----------|--------------------------------------|----------------|-------------------------|---------------|
|           | Mean                                 | 95% Exceedance | 50% Exceedance (Median) | 5% Exceedance |
| May       | 56                                   | 1              | 32                      | 180           |
| June      | 235                                  | 44             | 210                     | 517           |
| July      | 1,005                                | 341            | 943                     | 1,862         |
| August    | 1,072                                | 341            | 983                     | 2,164         |
| September | 538                                  | 70             | 408                     | 1,424         |
| October   | 191                                  | 16             | 78                      | 765           |

### 3.3 FLOOD FREQUENCY

DOWL estimated the flood frequency (i.e., the probability of instantaneous-occurring streamflow magnitudes to be exceeded annually) for the Dixon Diversion Basin. The following independent methods were applied to estimate the flood frequency for the basin:

1. USGS regression equations for ungaged streams in Alaska
2. USGS Bulletin 17C and the synthetic record for Dixon Creek at the Mouth

### 3.3.1 USGS METHODS FOR UNGAGED STREAMS

The USGS provides regional regression equations for estimating peak streamflow magnitude and frequency for ungaged sites in Alaska [3]. As defined by the USGS for Alaska, the Dixon Diversion Basin lies within Region 3 and, thus, the applicable peak flow regression equations are a function of drainage area, area of lakes and ponds, mean annual precipitation, and mean minimum January temperature; Table 6 lists the relevant basin characteristics for the USGS regression equations. Table 7 presents the Dixon Diversion Basin flood frequency estimated using the USGS regression methods for ungaged streams.

**Table 6. Dixon Diversion Basin Characteristics for USGS Peak Flow Regression**

| Basin Characteristic                          | Variable | Value                 |
|-----------------------------------------------|----------|-----------------------|
| Drainage Area                                 | A        | 19.13 mi <sup>2</sup> |
| Area of Lakes & Ponds                         | ST       | 0%                    |
| Mean Annual Precipitation <sup>2</sup>        | P        | 104 in.               |
| Mean Minimum January Temperature <sup>3</sup> | J        | 17.3 °F               |

**Table 7. Dixon Diversion Flood Frequency Using USGS Regression [3]**

| Recurrence Interval (years) | Annual Exceedance Probability | Estimated Inst. Annual Maximum Flow (cfs) | 95% to 5% Confidence Interval (cfs) |
|-----------------------------|-------------------------------|-------------------------------------------|-------------------------------------|
| 2                           | 50%                           | 1,960                                     | Between 1,090 and 3,580             |
| 5                           | 20%                           | 2,740                                     | Between 1,540 and 4,960             |
| 10                          | 10%                           | 3,280                                     | Between 1,830 and 5,960             |
| 25                          | 4%                            | 3,960                                     | Between 2,180 and 7,300             |
| 50                          | 2%                            | 4,480                                     | Between 2,430 and 8,410             |
| 100                         | 1%                            | 4,990                                     | Between 2,640 and 9,560             |
| 200                         | 0.5%                          | 5,540                                     | Between 2,860 and 10,900            |
| 500                         | 0.2%                          | 6,240                                     | Between 3,110 and 12,700            |

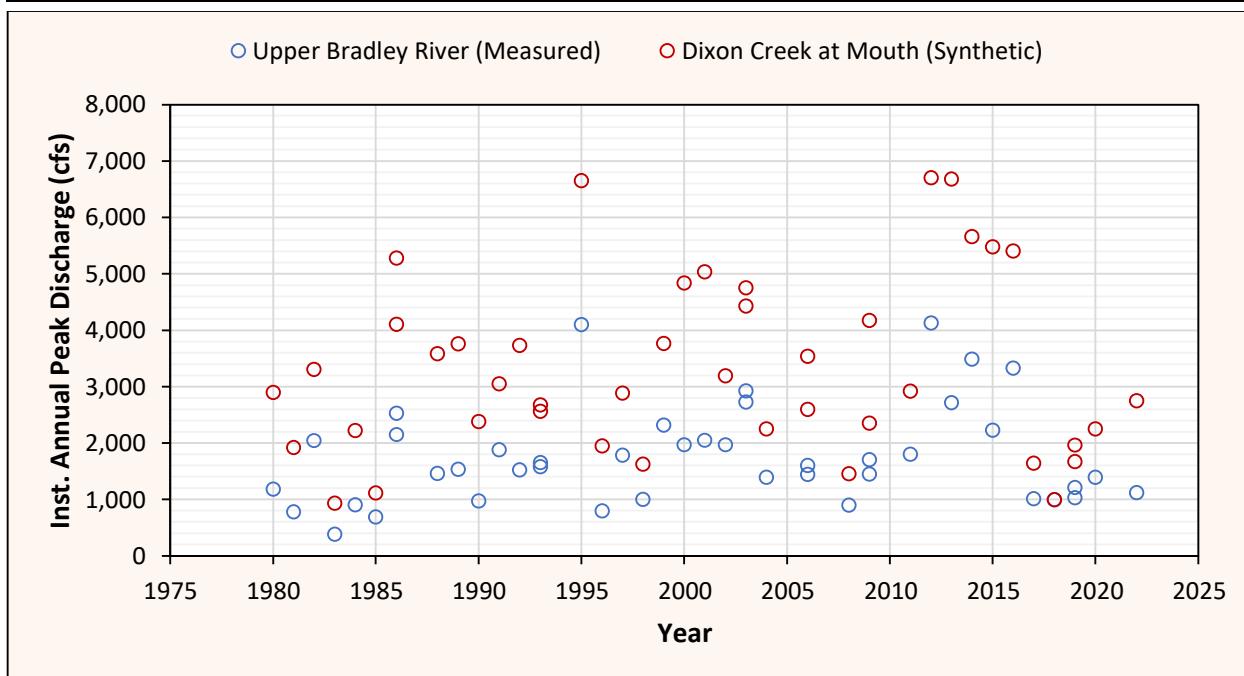
### 3.3.2 USGS BULLETIN 17C

DOWL developed a synthetic instantaneous annual peak discharge record for Dixon Creek at the Mouth using the Upper Bradley River/Dixon Creek relationship described in Section 3.1. Individual Upper Bradley River annual maximum discharges were translated to Dixon Creek using the relationship in Table 3 corresponding to the month the annual peak occurred. Figure 9 compares the measured Upper Bradley River peak discharges to the synthetic Dixon Creek at Mouth peak discharges.

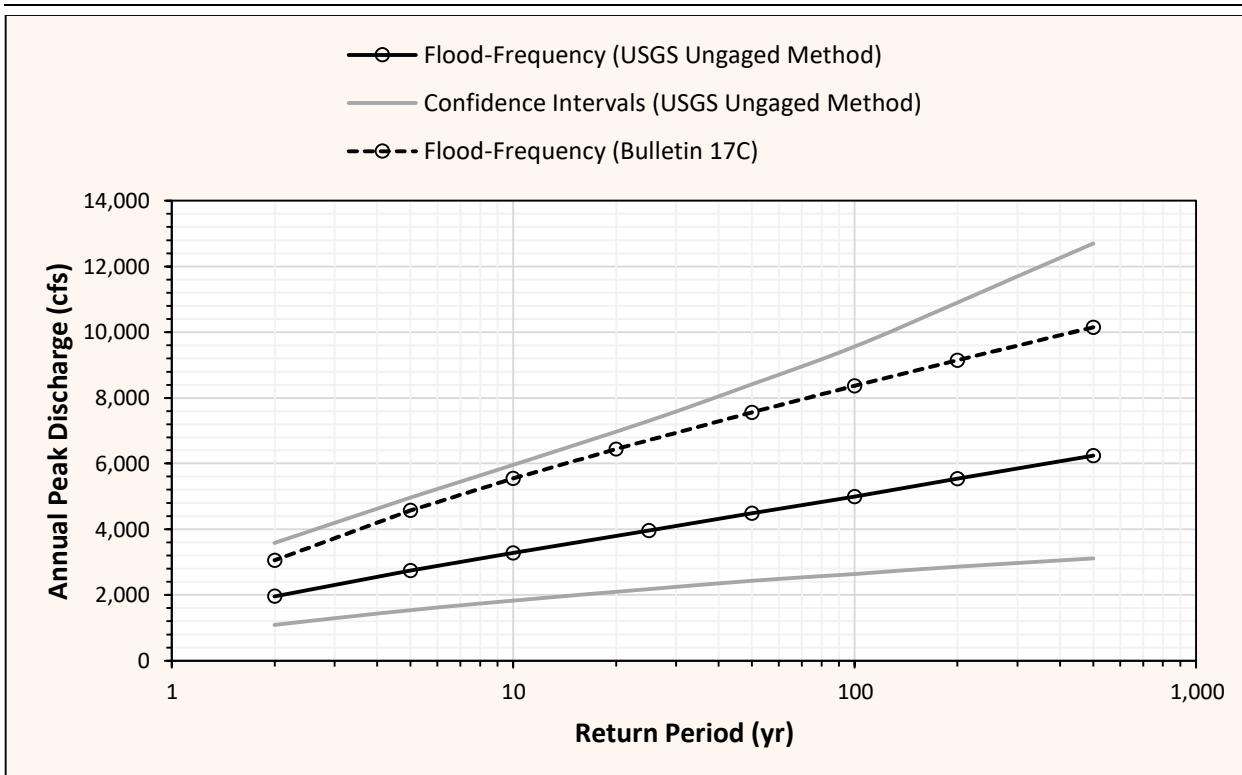
<sup>2</sup> The mean annual precipitation used for USGS regression is obtained from the area-average of 2010 normal PRISM data (1981-2010).

the 2010 normal PRISM area-averaged value for Dixon Diversion Basin (1981-2010).

<sup>3</sup> The mean minimum January temperature used for USGS regression is obtained from the area-average of 2010 normal PRISM data (1981-2010).



**Figure 9. Instantaneous Annual Peak Discharge**


Table 8 presents the results of the Bulletin 17C analysis for Dixon Creek at the Mouth using the synthetic discharge record.

**Table 8. Bulletin 17C Analysis Results (Dixon Creek at Mouth)**

| Recurrence Interval (years) | Annual Exceedance Probability | Estimated Inst. Annual Maximum Flow (cfs) |
|-----------------------------|-------------------------------|-------------------------------------------|
| 2                           | 50%                           | 3,100                                     |
| 5                           | 20%                           | 4,600                                     |
| 10                          | 10%                           | 5,500                                     |
| 20                          | 4%                            | 6,400                                     |
| 50                          | 2%                            | 7,600                                     |
| 100                         | 1%                            | 8,400                                     |
| 200                         | 0.5%                          | 9,100                                     |
| 500                         | 0.2%                          | 10,000                                    |

### 3.3.3 FLOOD FREQUENCY SUMMARY

Figure 10 compares the (1) USGS Methods for Ungaged Streams results and (2) Bulletin 17C results. The Bulletin 17C analysis provides significantly larger peak flow magnitudes, especially at less-frequent recurrence intervals, but are within the 5% and 95% confidence intervals of the Ungaged Method results. Table 9 presents the maximum instantaneous discharges measured at Dixon Creek at the Mouth and the Upper Bradley River in 2023 and their corresponding recurrence interval. The peak flow measured in the Upper Bradley River in 2023 corresponds to a frequent recurrence interval (< 2-yr flood magnitude). Assuming Dixon Creek at the Mouth basin experienced hydrological and meteorological conditions similar to the Upper Bradley River basin, the peak flow occurring at Dixon Creek at the Mouth would also correspond to a relatively frequent recurrence interval. Therefore, it appears the Bulletin 17C results (Table 8) are more appropriate for Dixon Creek at the Mouth.


**Figure 10. Flood-Frequency Results Comparison**
**Table 9. 2023 Peak Flows**

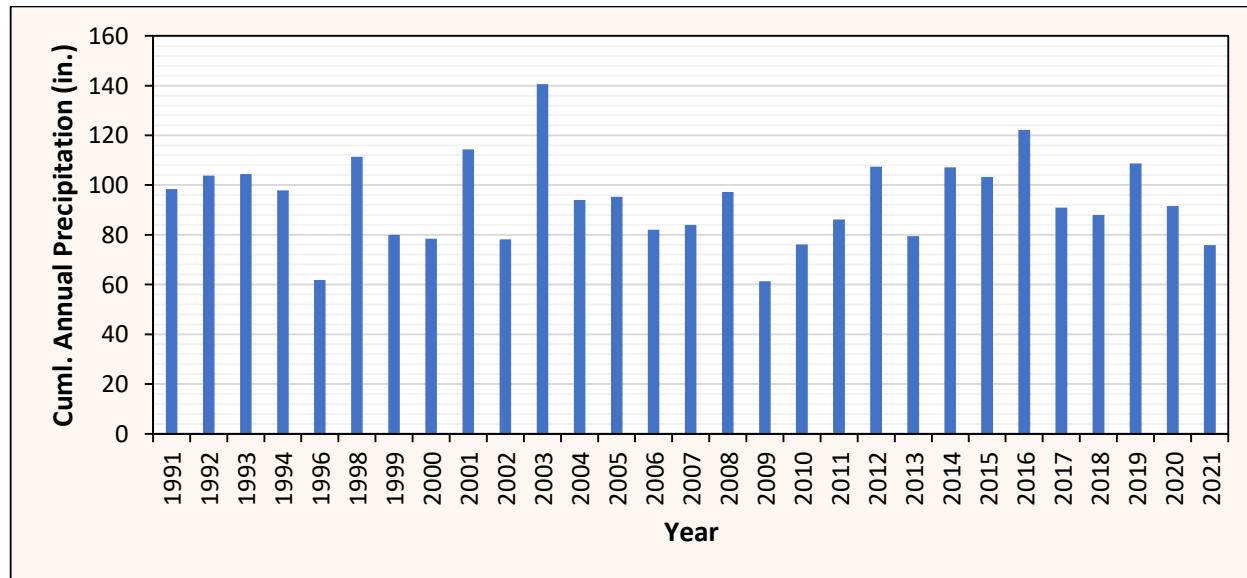
| Location                              | Instantaneous Maximum Q in 2023 (cfs) | Corresponding Recurrence Interval |                           |
|---------------------------------------|---------------------------------------|-----------------------------------|---------------------------|
|                                       |                                       | Bulletin 17C Basis                | USGS Ungaged Stream Basis |
| Dixon Creek at Mouth                  | 3,590                                 | 3.0-yr                            | 17-yr                     |
| Upper Bradley River near Nuka Glacier | 1,090                                 | 1.3-yr                            | N/A                       |

### 3.4 MASS BALANCE COMPARISON

By applying the principle of conservation of mass, runoff volume at the Upper Bradley River or Dixon Creek can be theoretically described using the following equation:

$$V_{runoff} = V_{precip} + V_{glacial} + V_{baseflow}$$

Precipitation, glacial melt, and streamflow (i.e., runoff) data are available for the Upper Bradley River. However, the baseflow component of streamflow is challenging to define accurately, and even if defined accurately, the equation's left and right sides will inevitably not be equal in a real-world scenario. The theoretical equation can be modified as follows to be used with available data:


$$V_{runoff} = C(V_{precip} + V_{glacial})$$

In the above equation,  $C$  is a dimensionless coefficient to account for all other factors influencing the mass balance, including baseflow.

### 3.4.1 UPPER BRADLEY RIVER MASS BALANCE

#### 3.4.1.1 PRECIPITATION DATA

Precipitation data from snowpack telemetry (SNOTEL) Site 1037 (Nuka Glacier) are available for the Upper Bradley River Basin. Figure 11 shows the cumulative annual precipitation recorded at the site. Table 10 compares the SNOTEL site data with parameter-elevation regressions on independent slope model (PRISM) 1981-2010 precipitation normals—the PRISM normals correlate well with the measured values at the SNOTEL site.



**Figure 11. SNOTEL Site 1037 – Cumulative Annual Precipitation**

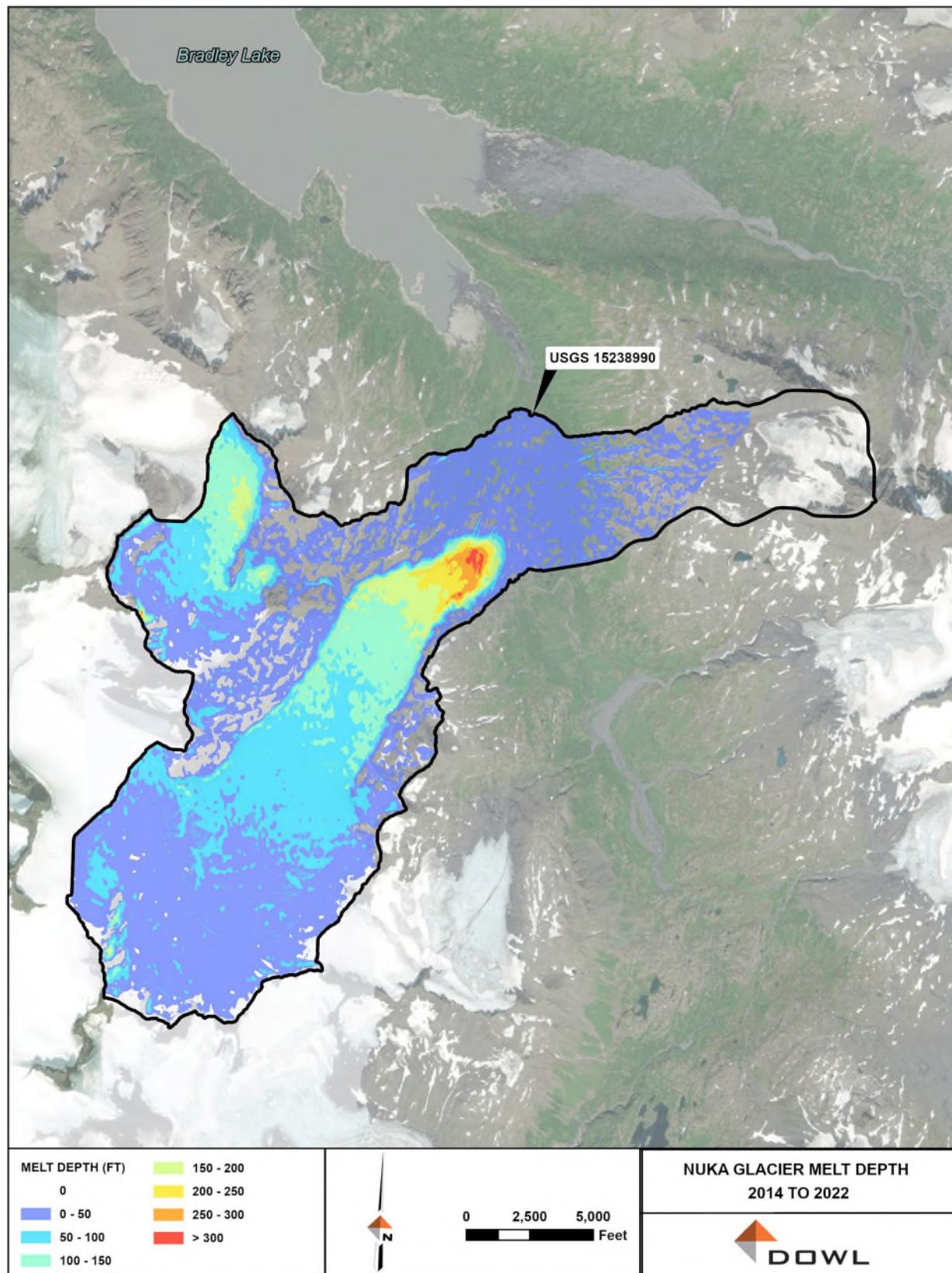
**Table 10. SNOTEL Site 1037 Comparison to PRISM Precipitation Normals**

| Month         | Precipitation (in.)                        |                                        |                                       |                                       |
|---------------|--------------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|
|               | 1981-2010 PRISM Normals<br>(Basin Average) | 1981-2010 PRISM Normals<br>(Min.-Max.) | SNOTEL Site 1037 Average<br>1991-2010 | SNOTEL Site 1037 Average<br>2011-2021 |
| January       | 8                                          | 7-10                                   | 6                                     | 10                                    |
| February      | 8                                          | 7-9                                    | 7                                     | 6                                     |
| March         | 6                                          | 5-9                                    | 6                                     | 5                                     |
| April         | 8                                          | 6-10                                   | 7                                     | 5                                     |
| May           | 5                                          | 5-6                                    | 5                                     | 5                                     |
| June          | 4                                          | 4-5                                    | 4                                     | 4                                     |
| July          | 5                                          | 4-7                                    | 5                                     | 5                                     |
| August        | 7                                          | 6-8                                    | 6                                     | 8                                     |
| September     | 12                                         | 11-16                                  | 11                                    | 15                                    |
| October       | 13                                         | 10-18                                  | 13                                    | 15                                    |
| November      | 10                                         | 7-13                                   | 11                                    | 9                                     |
| December      | 12                                         | 9-15                                   | 11                                    | 10                                    |
| <b>Annual</b> | <b>98</b>                                  | <b>80-126</b>                          | <b>92</b>                             | <b>97</b>                             |

### 3.4.1.2 GLACIAL MELT DATA

Two terrain mapping datasets are available for the glaciated area of the Upper Bradley River basin (i.e., Nuka Glacier), collected in two different years: 2014 and 2022. The 2014 terrain is derived from five-meter resolution interferometric synthetic aperture radar (IfSAR) mapping, and the 2022 terrain is derived from one-foot resolution light ranging and detection and ranging (LiDAR) mapping. By subtracting the 2022 terrain from the 2014 terrain, an estimate of glacial melt volume and spatial distribution is obtained, as shown in Figure 12. Table 11 presents the estimated glacial melt volume in the Upper Bradley River basin from 2014 to 2022 and an estimated annual melt volume assuming meteorological and hydrological stationarity between the years.

**Table 11. Nuka Glacier Melt Volume (2014 to 2022)**


|                                                 |                   |
|-------------------------------------------------|-------------------|
| <b>Estimated Glacial Melt Volume</b>            | 285,000 acre-ft   |
| <b>Estimated Average Annualized Melt Volume</b> | 34,800 acre-ft/yr |

### 3.4.1.3 MASS BALANCE

Table 12 summarizes the mass balance for the Upper Bradley River basin from 2014 to 2022 (i.e., between the terrain mapping events). For documentation purposes, the total precipitation depth between the terrain mapping events was 792.5 inches, as measured at SNOTEL Site 1037. Approximately 302,000 more acre-ft of water ran off from 2014 to 2022 than was estimated from precipitation and glacial melt. To account for the discrepancy, a correction coefficient  $C$  of 1.40 is calculated.

**Table 12. Upper Bradley River Mass Balance (2014 to 2022)**

|                                        |
|----------------------------------------|
| $V_{precip} = 471,270$ acre-ft         |
| $V_{glacial} = 285,000$ acre-ft        |
| $V_{in} = \mathbf{756,270}$ acre-ft    |
| $V_{runoff} = 1,058,320$ acre-ft       |
| $V_{out} = \mathbf{1,058,320}$ acre-ft |
| $V_{out} - V_{in} = 302,050$ acre-ft   |
| $C = \frac{V_{out}}{V_{in}} = 1.40$    |



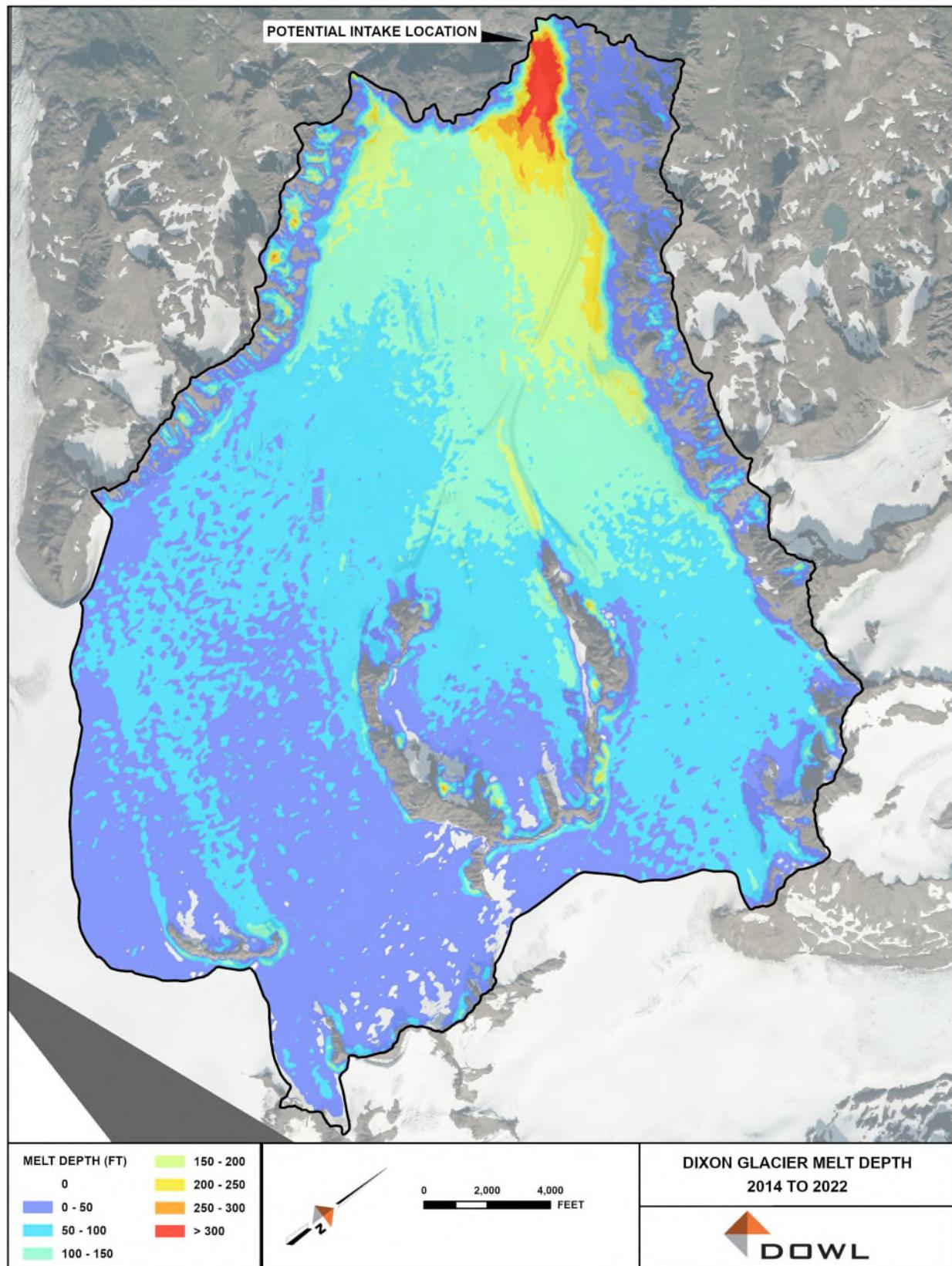
**Figure 12. Nuka Glacier Melt Depth Map (2014 to 2022)**

### 3.4.2 DIXON CREEK AT MOUTH MASS BALANCE

#### 3.4.2.1 PRECIPITATION DATA

DOWL estimated cumulative annual precipitation depths occurring in the Dixon Creek at Mouth Basin using the following relationship:

$$P_{Dixon} = P_{SNOWTEL 1037} \left( \frac{P_{Dixon PRISM}}{P_{Bradley PRISM}} \right)$$


The above relationship is based upon the assumption that precipitation depths in the Dixon Creek at Mouth basin can be estimated using measured precipitation in the Upper Bradley River Basin (i.e., SNOTEL Site 1037). DOWL adjusted the SNOTEL Site 1037 precipitation to the Dixon Creek at Mouth basin using a ratio of the PRISM normal between the basins. Based on the agreeance of PRISM normals and SNOTEL data shown in Table 10, the normals are likely a good indicator of precipitation for the Dixon Creek at Mouth basin. The cumulative precipitation depth between the terrain data collection times is estimated to be 841 inches.

#### 3.4.2.2 GLACIAL MELT DATA

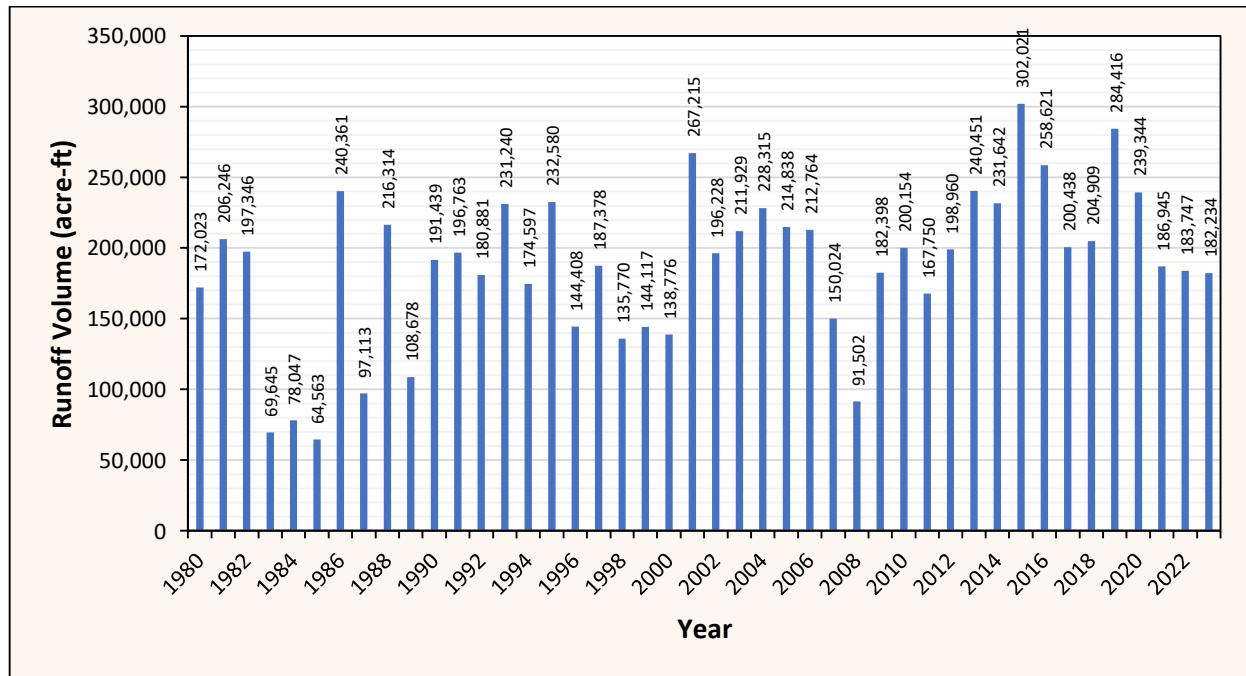
The Dixon Glacier melt volume from 2014 to 2022 can be estimated using the methodology described in Section 3.4.1.2. Figure 13 presents a melt depth map for the Dixon Glacier, and Table 13 summarizes the estimated glacial melt volume in the Dixon Creek at Mouth basin from 2014 to 2022.

**Table 13. Dixon Glacier Melt Volume (2014 to 2022)**

|                                                 |                   |
|-------------------------------------------------|-------------------|
| <b>Estimated Glacial Melt Volume</b>            | 755,000 acre-ft   |
| <b>Estimated Average Annualized Melt Volume</b> | 94,500 acre-ft/yr |



**Figure 13. Dixon Glacier Melt Depth Map (2014 to 2022)**


### 3.4.2.3 MASS BALANCE

Assuming the correction coefficient  $C$  solved for in Table 12 applies to the Dixon Creek at Mouth basin, the cumulative Dixon Creek runoff volume occurring between 2014 and 2022 can be estimated using the following mass balance approach:

$$\begin{aligned}
 V_{runoff} &= C(V_{precip} + V_{glacial}) \\
 &= 1.40 \times ((998,460 \text{ acre} \cdot \text{ft}) + (775,000 \text{ acre} \cdot \text{ft})) \\
 &= 2,483,000 \text{ acre} \cdot \text{ft}
 \end{aligned}$$

## 3.5 HYDROLOGIC ANALYSIS SUMMARY

Figure 14 presents the Dixon Creek at Mouth cumulative May through October runoff volumes estimated using the synthetic discharge record described in Section 3.1. Note that these are not potential diversion volumes and do not account for minimum instream flow and other diversion operations parameters. Estimated diversion amounts were investigated using the diversion operations model described in Section 4.0.



**Figure 14. Dixon Creek at Mouth Runoff Volumes Estimated from Synthetic Discharge Record**

Table 14 compares the Dixon Creek at Mouth 2014-2022 runoff volume estimated using the synthetic discharge record and the runoff volume estimated using the mass-balance methodology. The synthetic discharge methodology provides a runoff volume of 478,000 acre-ft less than the mass balance methodology. However, the synthetic discharge record volume estimate only accounts for streamflow from May through October. The comparison of the independent methodologies validates the order of magnitude of the synthetic discharge volume estimate, and the synthetic discharge record is used in the diversion operations model described in the following section.

**Table 14. Comparison of Dixon Creek Runoff Volume Estimated Using Different Methodologies**

| Basis of Estimate          | Estimated Runoff Volume (acre-ft) | Period       |
|----------------------------|-----------------------------------|--------------|
| Synthetic Discharge Record | 2,005,000                         | 2014 to 2022 |
| Mass Balance               | 2,483,000                         | 2014 to 2022 |

## 4.0 DIVERSION OPERATIONS MODEL

The objective of the diversion operations model described in the following subsections is to quantify the amount of water that could be diverted using different assumed diversion tunnel capacities and minimum instream flow requirements. Appendix B includes results printouts from the model.

### 4.1 ASSUMPTIONS & METHODOLOGY

The operations model is based on the following instream flow assumption for all months the diversion would be operating:

- When Dixon Creek streamflow is less than or equal to 100 cfs, all flow would be passed downstream (i.e., diversion would not occur).
- When Dixon Creek streamflow exceeds 100 cfs, at least 100 cfs would be passed downstream (i.e.,  $Q_{MIF} = 100$  cfs).

Minimum Instream Flow (MIF) requirements will evolve as more hydrological and biological information becomes available for the watershed. Agency-determined MIFs will likely be different for different months/periods.

The operations model uses the following logic to estimate diverted streamflows from the synthetic Dixon Creek discharge record:

- Streamflows up to 100 cfs are bypassed. The “first water” in the creek goes to the MIF.
- Streamflows exceeding 100 cfs and less than the assumed tunnel capacity for the particular scenario are diverted.
- Streamflows exceeding the tunnel capacity are bypassed (i.e., wasted).

For this report, DOWL examined three different tunnel capacities: 1,000 cfs, 1,200 cfs, and 1,400 cfs. DOWL also investigated the sensitivity of different periods of record (e.g., the last 20 years vs. the entire period of record) to consider the potential of non-stationarity in Dixon Glacier melt rates and precipitation trends.

### 4.2 RESULTS SUMMARY

Table 15 presents the results of the diversion operations model. More extensive results are included in Appendix B. The diverted amounts listed in Table 15 are average annual amounts for the specified period of record. Table 16 presents results from the operations model based on only the measured 2023 data. Note that October data were not available for the measured dataset, and thus, the diverted volume in Table 16 is lower than the expected diverted volumes listed in Table 15.

It appears that the average runoff volume in Dixon Creek is increasing over time. For example, the average annual runoff volume estimated using only 2003-2022 data, a sample size of reasonable statistical relevance, is about 12% larger than when considering the entire period of record.

**Table 15. Diversion Operational Model Results (Using Synthetic Record)**

| Period of Record         | Average Annual Runoff (acre-ft) | Average Annual Diverted Volume (acre-ft) |                            |                            |
|--------------------------|---------------------------------|------------------------------------------|----------------------------|----------------------------|
|                          |                                 | Tunnel Capacity: 1,000 cfs               | Tunnel Capacity: 1,200 cfs | Tunnel Capacity: 1,400 cfs |
| 1980-2022 (All Data)     | 189,300                         | 133,200<br>(70% diverted)                | 141,900<br>(75% diverted)  | 147,400<br>(78% diverted)  |
| 1993-2022 (30-yr Record) | 203,700                         | 143,200<br>(70% diverted)                | 152,800<br>(75% diverted)  | 159,000<br>(78% diverted)  |
| 2003-2022 (20-yr Record) | 212,200                         | 147,900<br>(70% diverted)                | 158,400<br>(75% diverted)  | 165,500<br>(78% diverted)  |
| 2013-2022 (10-yr Record) | 238,500                         | 160,400<br>(67% diverted)                | 173,600<br>(73% diverted)  | 182,800<br>(77% diverted)  |

**Table 16. Diversion Operational Model Results (Using Measured 2023 Data)**

| Period of Record     | Runoff (acre-ft) | Average Annual Diversion Volume (acre-ft) |                            |                            |
|----------------------|------------------|-------------------------------------------|----------------------------|----------------------------|
|                      |                  | Tunnel Capacity: 1,000 cfs                | Tunnel Capacity: 1,200 cfs | Tunnel Capacity: 1,400 cfs |
| 5/1/2023 – 9/30/2023 | 179,559          | 122,573<br>(68% diverted)                 | 130,339<br>(73% diverted)  | 137,315<br>(76% diverted)  |

Table 17 compares tunnel size (i.e., capacity) to the incremental increase in diverted volume. The table shows that the incremental benefit of increasing tunnel size decreases as tunnel capacity increases. Based on this analysis, it appears that a tunnel size that achieves a capacity between 1,000 and 1,400 cfs will achieve a reasonable balance between size and cost.

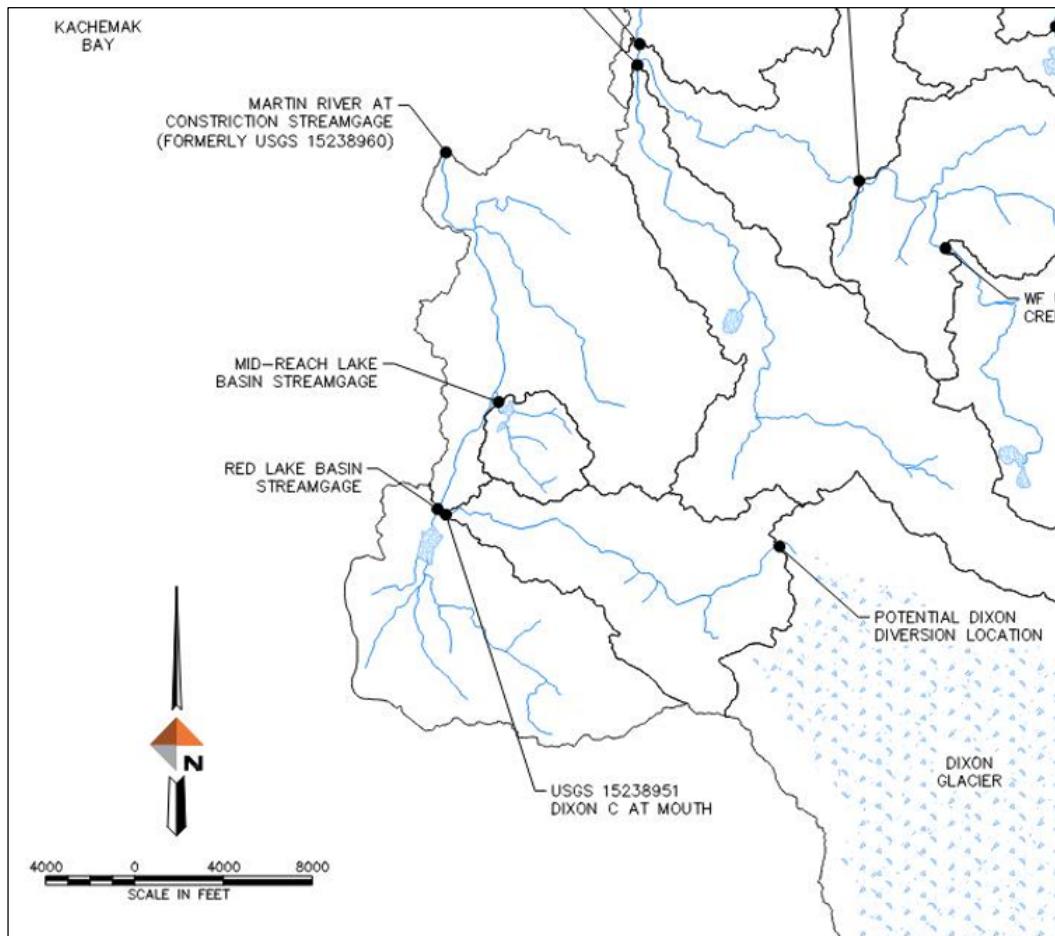
**Table 17. Incremental Increase in Diverted Volume with Increased Tunnel Capacity**

| Tunnel Capacity | Average Annual Diverted Volume (acre-ft) | Incremental Increase in Diverted Volume (acre-ft) | Incremental Increase in Diverted Volume (%) |
|-----------------|------------------------------------------|---------------------------------------------------|---------------------------------------------|
| 1,000 cfs       | 133,200 to 160,400                       | -                                                 | -                                           |
| 1,200 cfs       | 141,900 to 173,600                       | 8,700 to 13,200                                   | 7% to 8%                                    |
| 1,400 cfs       | 147,400 to 182,800                       | 5,500 to 9,200                                    | 4% to 5%                                    |

## 5.0 REFERENCES

- [1] DOWL, "Dixon Glacier Basin Hydrologic Analysis," 2022.
- [2] DOWL, "Dixon Glacier Precipitation Trends," 2022.
- [3] J. H. Curran, D. F. Meyer and G. D. Tasker, "Estimating the Magnitude and Frequency of Peak Streamflows for Ungaged Sites on Streams in Alaska and Conterminous Basins in Canada," US Geological Survey, Anchorage, AK, 2003.

## **Appendix A: Streamflow Data Collection Memorandum**


TO: Bryan Carey, PE  
 FROM: Jack Krusemark, EI; Euan-Angus MacLeod, PE, CFM; Cameron Brailey, EIT  
 DATE: 10/27/2023  
 PROJECT: Dixon Diversion Conceptual Study  
 SUBJECT: Streamflow Data Collection

\\dowl.com\\Projects\\36\\90090-01\\91rpts\\HydrologyReportsAndMemos\\202310\_DixonDiversionHydrologyReport\\Appendices\\A\_StreamflowDataMemo\\Dixon\_StreamflowDataCollectionMemo.docx

DOWL collected stage and discharge data at three locations along the Martin River/Dixon Creek watercourse to support the hydrologic analyses performed for the Dixon Diversion Conceptual Study, listed below:

1. At a constriction in the Martin River near river mile (RM) 1.5 (a.k.a. Martin River at Constriction)
2. Near the outlet of Red Lake (a.k.a. Red Lake Basin Outlet)
3. Near the outlet of Mid-Reach Lake (a.k.a. Mid-Reach Lake Basin Outlet)

DOWL also analyzed the preliminary USGS data for a gage at Dixon Creek at Mouth near RM 4.2 (USGS 15238951). Figure 1 presents an excerpt of a schematic map showing the general locations of the gage locations. The Dixon Diversion Conceptual Study Hydrology Report includes the full schematic map.



**Figure 1. Streamgages along the Martin River/Dixon Creek Watercourse**

---

## MEASUREMENT METHODOLOGY

---

To measure stage, DOWL used HOBO MX2001 water level data loggers. Once installed, the loggers captured data at a 15-minute interval. The loggers were secured to a protective casing, either a 1.25-inch stainless steel pipe or a 2-inch aluminum stilling well. In low-velocity locations, the protective casings were attached to dowels driven into the channel bed, and in high-velocity locations, the stilling well was fastened to bedrock using self-tapping rock bolts.

DOWL deployed the stage data loggers during open-water conditions (approximately April to November) and retrieved the data from the loggers monthly. While retrieving data, DOWL assessed each logger for damage and movement. Stage measurements performed by DOWL used guidance from the USGS methodology Techniques and Methods 3-A7: Stage Measurement at Gaging Stations.

Depending on flow conditions, DOWL used either a Sontek RS5 Acoustic Doppler Current Profiler (ADCP) or a FlowTracker 2 to measure discharge. Discharge measurements were performed as close to the stage data logger as possible. Discharge measurements were collected monthly (at a minimum) to capture the seasonal discharge variations of the watershed. Discharge measurements performed by DOWL used guidance from the following USGS methodologies:

- Techniques and Methods 3-A8: Discharge Measurements at Gaging Stations
- Techniques and Methods 3-A22: Measuring Discharge with Acoustic Doppler Current Profilers from a Moving Boat

Each ADCP discharge measurement consisted of four to sixteen individual ADCP measurements (i.e., transects). The individual measurements were averaged to provide a single flow measurement for that date and time. DOWL reviewed all ADCP measurements for consistent bottom tracking, estimated flows near banks, percent of flow measured, average water velocity, total flow, and the coefficient of variation. Transects with significant errors or missing data were removed. Low-flow discharge measurements were collected with the FlowTracker 2 ADCP using at least twenty discrete sampling stations along a transect, velocities, depths, and percent discharge uncertainty values.

---

## SITE DESCRIPTIONS

---

### MARTIN RIVER AT CONSTRICITION

DOWL collected stage data for the Martin River at the Constriction using two stage data loggers, one installed on each side of the constriction for redundancy. The streambed within the bedrock constriction is an alluvial braid plain. The high-velocity environment appears to induce varying channel properties such as cross-sectional area, channel orientation, velocity distribution, and bed elevation. Moving beds induced by sediment transport may impact hydroacoustic discharge measurements at this site.

Figure 2 shows the Martin River at Constriction gage location, Figure 3 shows an aerial photograph of the site, and Figure 4 shows photos of the two stage gages installed. The river-right gage was damaged on July 3 during a high flow event, and DOWL was unable to replace this sensor. Three relatively low-flow discharge measurements were collected while this sensor was operable. The river-left sensor operated from April 25 to July 16, 2023, and from August 31, 2023 to present day. The river-left sensor malfunctioned from July 16 to August 31 and could not be replaced until DOWL had the proper safety equipment and resources to access the gage. Check gage heights were not collected at the constriction due to safety concerns in reaching the established gage height reference points.

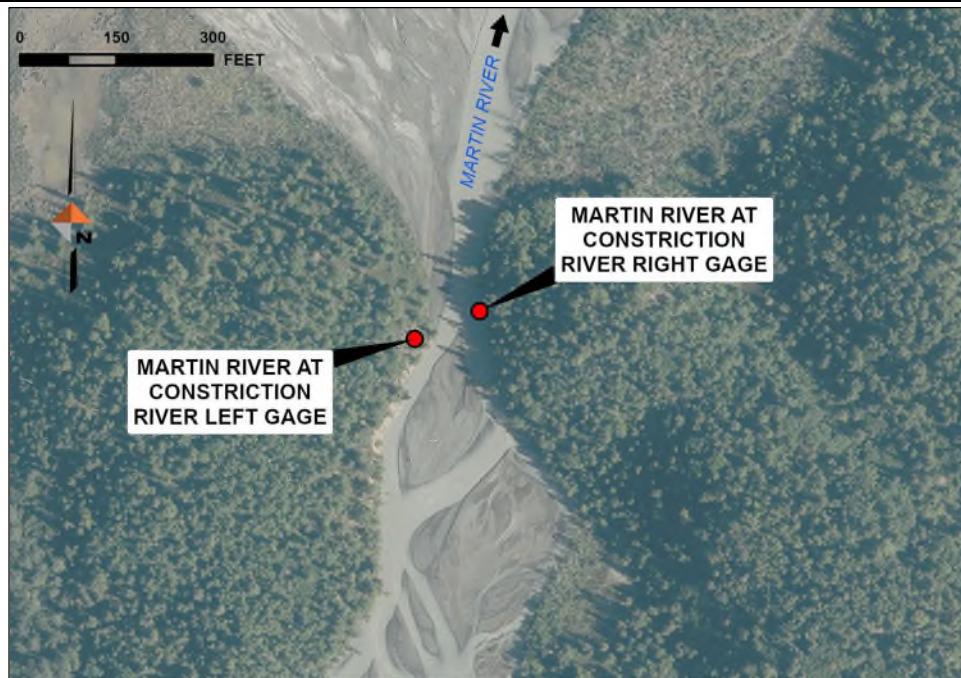
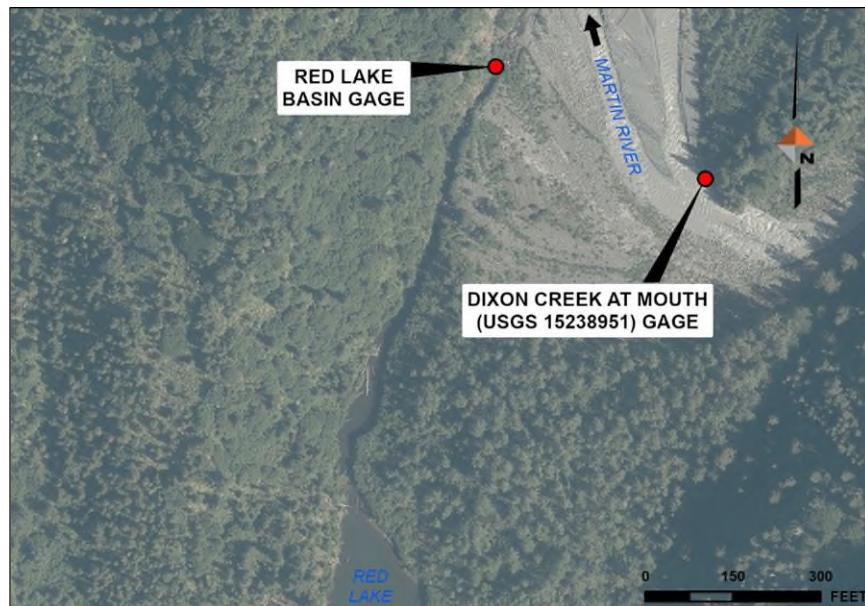



Figure 2. Martin River at Constriction Gage Location




Figure 3. Martin River at Constriction (Looking Downstream)



**Figure 4. Constriction River-Left Gage (Left) and River-Right Gage (Right)**

## RED LAKE BASIN OUTLET

This gage is located near the outlet of Red Lake, in the channel constriction before its confluence with the Martin River. The outlet channel appears to have stable geometry. The gage is located between apparently stable grade control features upstream and downstream, consisting of medium-sized boulders. Figure 5 shows the location of the gage, and Figure 6 shows a photograph of the gage.



**Figure 5. Red Lake Basin Outlet Gage Location**



Figure 6. Red Lake Basin Outlet Gage

## MID-REACH LAKE BASIN OUTLET

This gage is located near the outlet of a mid-reach lake upstream of the drainage's confluence with the Martin River. Figure 7 shows the location of the gage, and Figure 8 shows a photograph of the gage. The channel at the site is shallow and appears to be overtopped during high-flow events in the Martin River.



Figure 7. Mid-Reach Lake Basin Outlet Gage Location



Figure 8. Mid-Reach Lake Basin Outlet Gage

## DIXON CREEK AT MOUTH (USGS 15238951)

The USGS has operated a stage gage at Dixon Creek at the Mouth since April 13, 2023. Figure 9 shows the location of the USGS gage, and Figure 10 shows a photograph of the gage. USGS-published continuous discharge data are not yet available for the site because they are still in the process of creating a gage rating curve. Provisional stage data are available on the USGS website, and the USGS has measured discharge twice at the site.

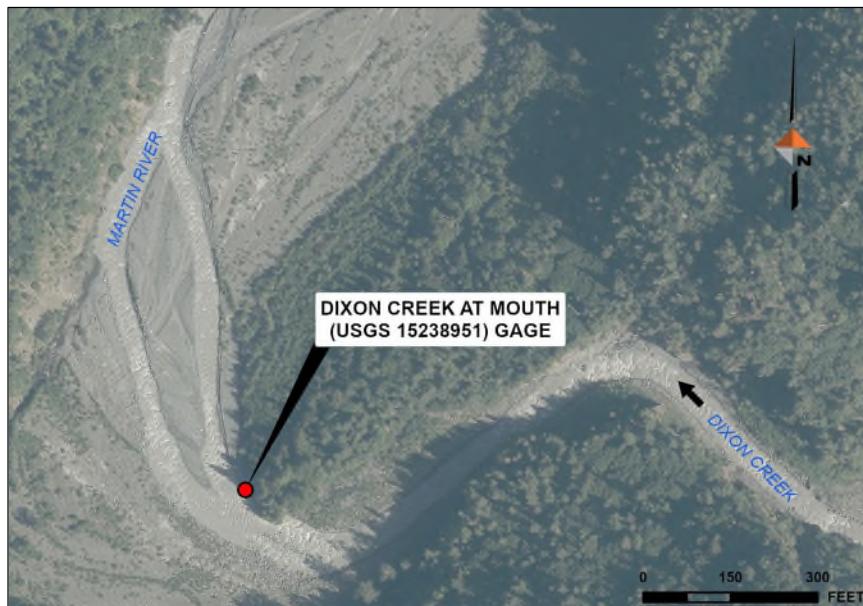



Figure 9. Dixon Creek at Mouth (USGS 15238951) Gage Location

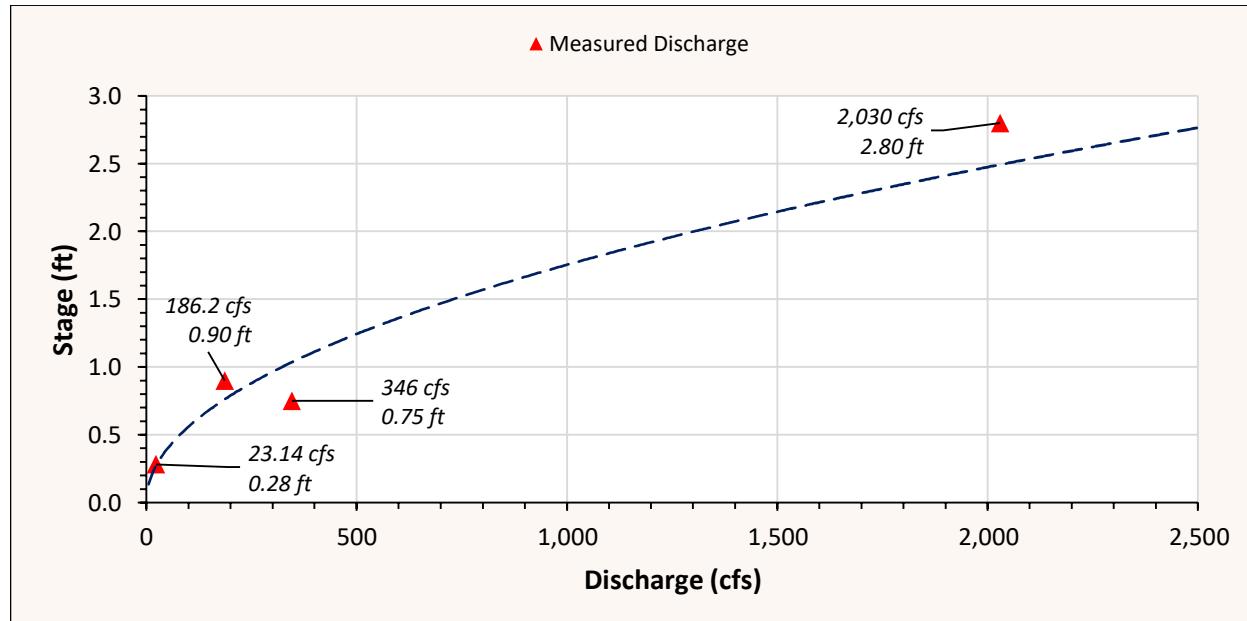


**Figure 10. Dixon Creek at Mouth (USGS 15238951) Gage**

## 2023 DISCHARGE MEASUREMENTS

Table 1 presents the discharge measurements collected along the Martin River/Dixon Creek watercourse in 2023.

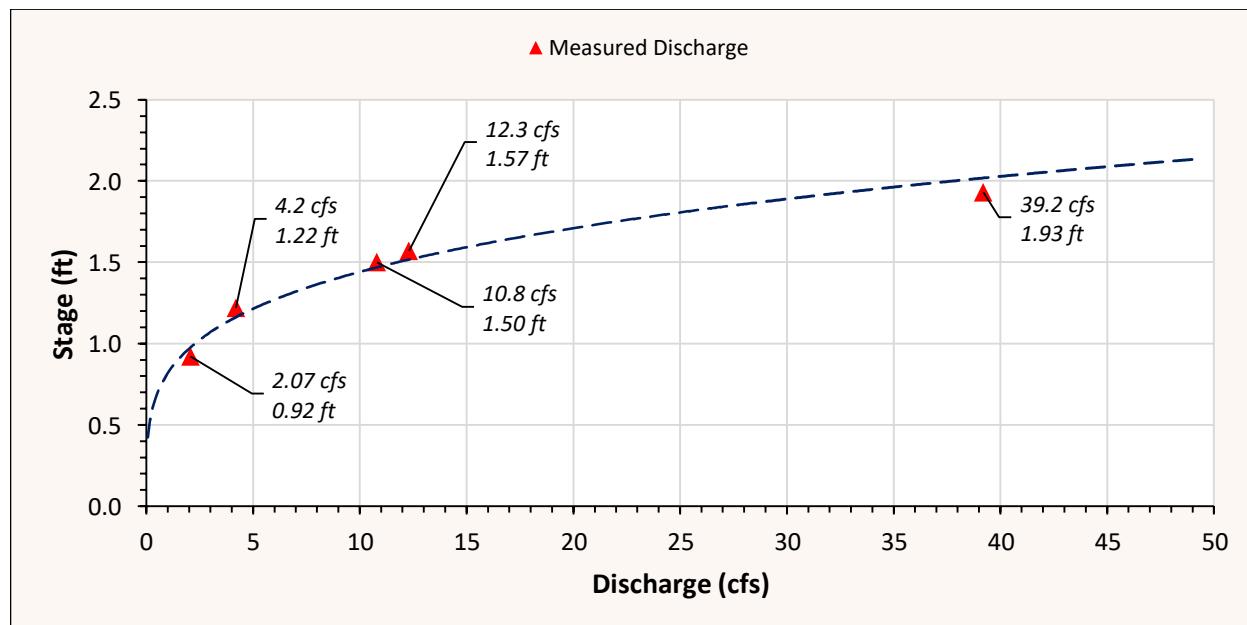
**Table 1. 2023 Discharge Measurements**


| Date      | Measured discharge (cfs)     |                       |                             |                                   |
|-----------|------------------------------|-----------------------|-----------------------------|-----------------------------------|
|           | Martin River at Constriction | Red Lake Basin Outlet | Mid-Reach Lake Basin Outlet | Dixon Creek at Mouth <sup>1</sup> |
| 4/24/2023 | -                            | 2.07                  | 1.19                        | -                                 |
| 4/25/2023 | 23.14                        | -                     | -                           | -                                 |
| 5/26/2023 | 186.2                        | 39.2                  | 2.94                        | -                                 |
| 6/23/2023 | -                            | 12.3                  | 1.03                        | -                                 |
| 7/12/2023 | -                            | -                     | -                           | 927                               |
| 7/20/2023 | 900                          | 4.2                   | 1.09                        | -                                 |
| 8/16/2023 | -                            | -                     | -                           | 1,010                             |
| 8/24/2023 | 1,291                        | -                     | -                           | -                                 |
| 8/31/2023 | 2,030                        | -                     | -                           | -                                 |
| 9/19/2023 | 346                          | 10.8                  | 1.43                        | -                                 |

<sup>1</sup> USGS collected the discharge measurements for Dixon Creek at Mouth.

## STREAMGAGE RATING CURVES

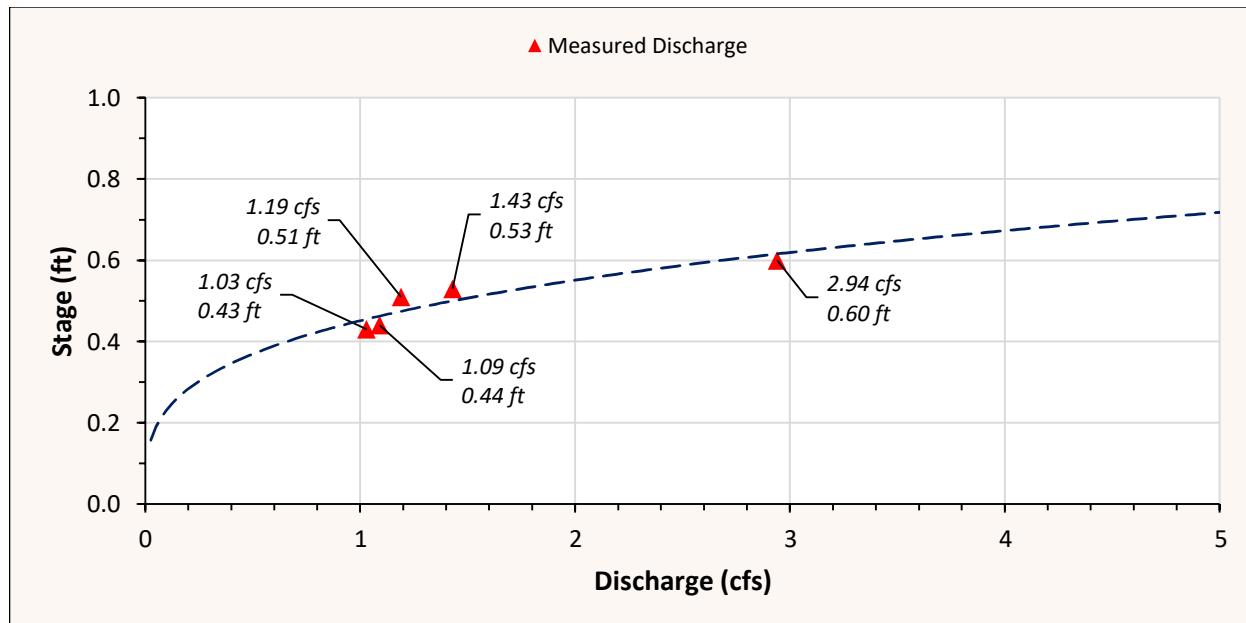
### MARTIN RIVER AT CONSTRICKTION


Figure 11 presents the rating curve for the Martin River at Constriction gage using the river-left constriction gage and four data points for which accurate stage and discharge data are available. A power equation ( $Q = 323h^{2.01}$ ) was fit to the data with a coefficient of determination (i.e.,  $R^2$ ) of 0.96.



**Figure 11. Martin River at Constriction Streamgage Rating Curve**

### RED LAKE BASIN OUTLET


Figure 12 presents the rating curve for the Red Lake Basin Outlet gage using five data points. A power equation ( $Q = 2.28h^{4.05}$ ) was fit to the data with a coefficient of determination of 0.97.



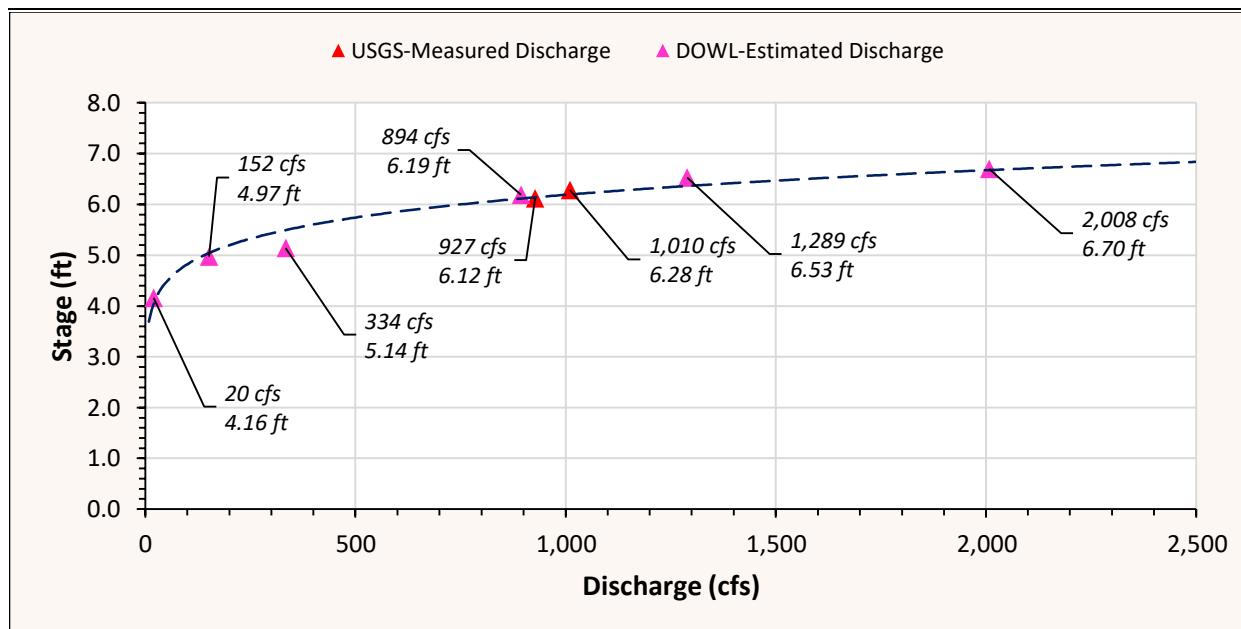
**Figure 12. Red Lake Basin Outlet Streamgage Rating Curve**

## MID-REACH LAKE BASIN OUTLET

Figure 13 presents the rating curve for the Mid-Reach Lake Basin Outlet gage using five data points. A power equation ( $Q = 15.8h^{3.47}$ ) was fit to the data with a coefficient of determination of 0.82.



**Figure 13. Mid-Reach Lake Basin Outlet Streamgage Rating Curve**

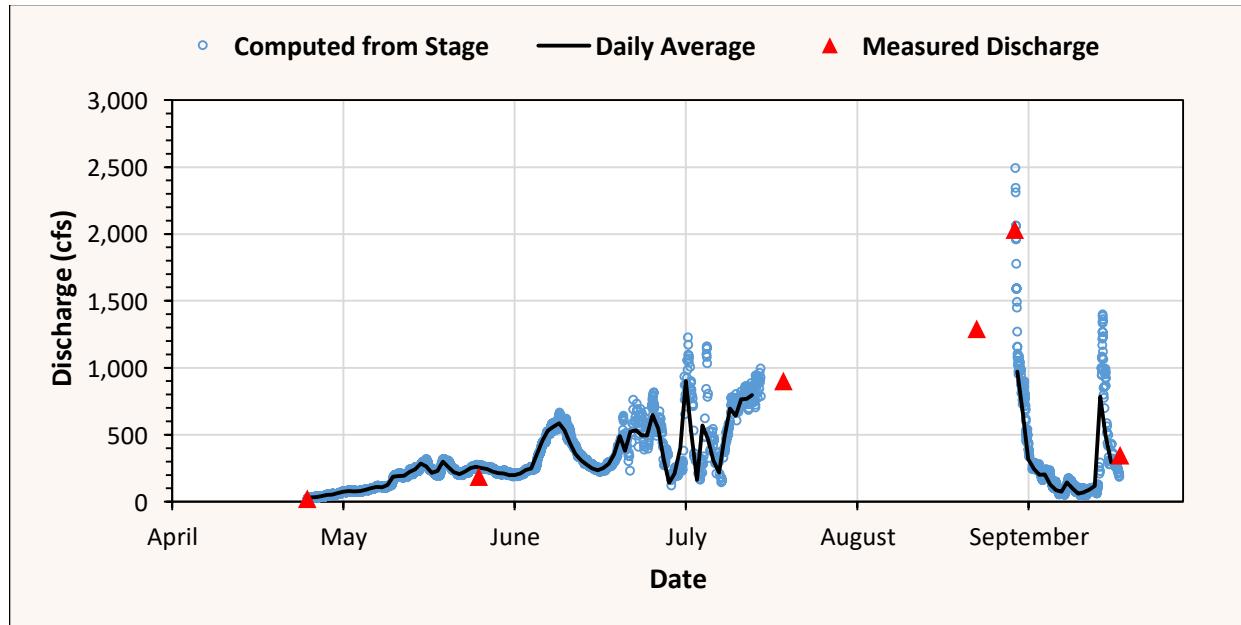

## DIXON CREEK AT MOUTH

Only two discharge measurements are currently available for Dixon Creek at the Mouth, taken at relatively similar flow rates. DOWL developed a provisional rating curve for the site by estimating Dixon Creek discharge on days that measured discharge data for Martin River at the Constriction are available. It was assumed that Dixon Creek at Mouth discharge can be estimated by subtracting Red Lake Outlet and Mid-Reach Lake Outlet daily average discharge from the DOWL-measured Martin River at Constriction discharge. This assumption is further discussed later in this document. Table 2 presents the measured and estimated Dixon Creek at Mouth discharge and stages and presents the provisional rating curve ( $Q = (4.99 \times 10^{-5})h^{9.23}$ ).

**Table 2. Basis of Dixon Creek at Mouth Provisional Rating Curve**

| Date      | Discharge (cfs) | Stage (ft) | Notes                                |
|-----------|-----------------|------------|--------------------------------------|
| 4/25/2023 | 20              | 4.16       | Estimated <sup>2</sup>               |
| 5/26/2023 | 152             | 4.97       | Estimated <sup>2</sup>               |
| 7/12/2023 | 927             | 6.12       | Stage and discharge measured by USGS |
| 7/20/2023 | 894             | 6.19       | Estimated <sup>2</sup>               |
| 8/16/2023 | 1,010           | 6.28       | Stage and discharge measured by USGS |
| 8/24/2023 | 1,289           | 1,289      | Estimated <sup>2</sup>               |
| 8/31/2023 | 2,008           | 6.70       | Estimated <sup>2</sup>               |
| 9/19/2023 | 334             | 5.14       | Estimated <sup>2</sup>               |

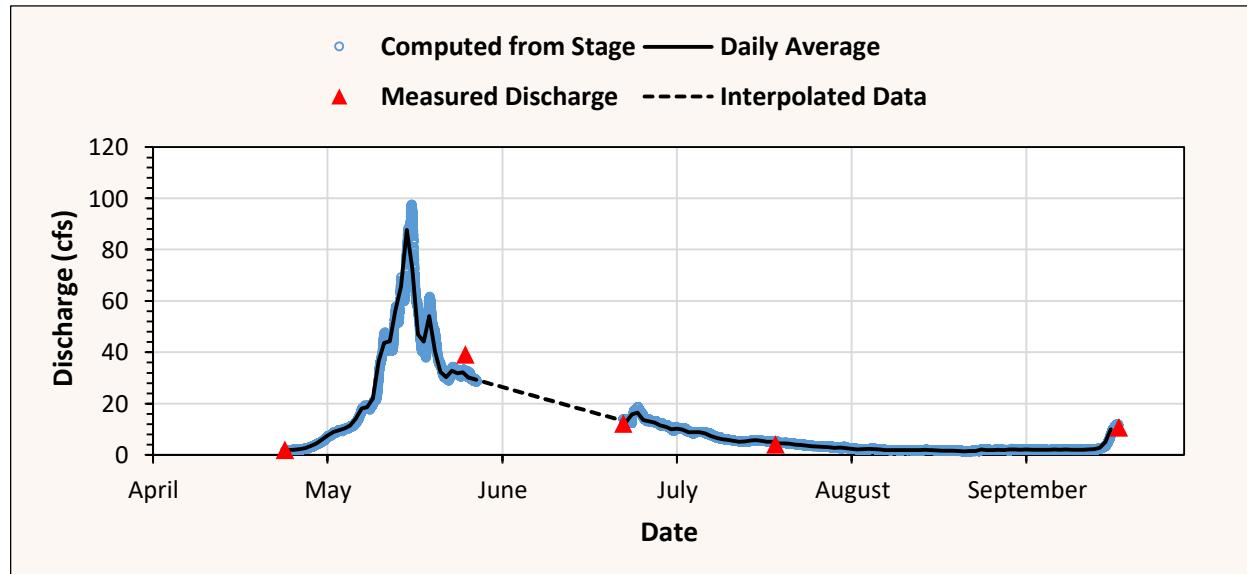
<sup>2</sup>  $Q_{Mouth} = Q_{Constriction} - Q_{Red\ Lake} - Q_{MR\ Lake}$




**Figure 14. Dixon Creek at Mouth Provisional Streamgage Rating Curve**

## CONTINUOUS STREAMFLOW DATA

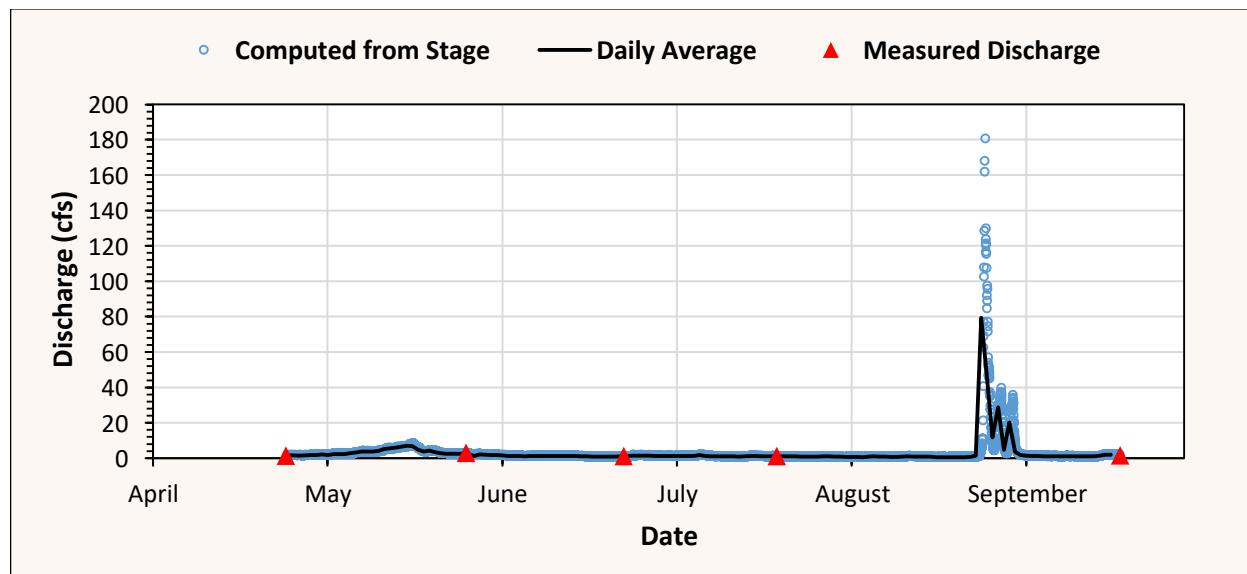
### MARTIN RIVER AT CONSTRICION


Figure 15 presents the 2023 continuous streamflow record for the Martin River at Constriction gage. DOWL developed the continuous streamflow record by applying the gage rating curve in Figure 11 and filtering erroneous stage measurements from the dataset. Attachment 1 includes tabulated daily average discharge values. Note the gap in the dataset from July 16 to August 31 – this is due to the stage gage malfunctioning.



**Figure 15. Martin River at Constriction Continuous Streamflow Record**

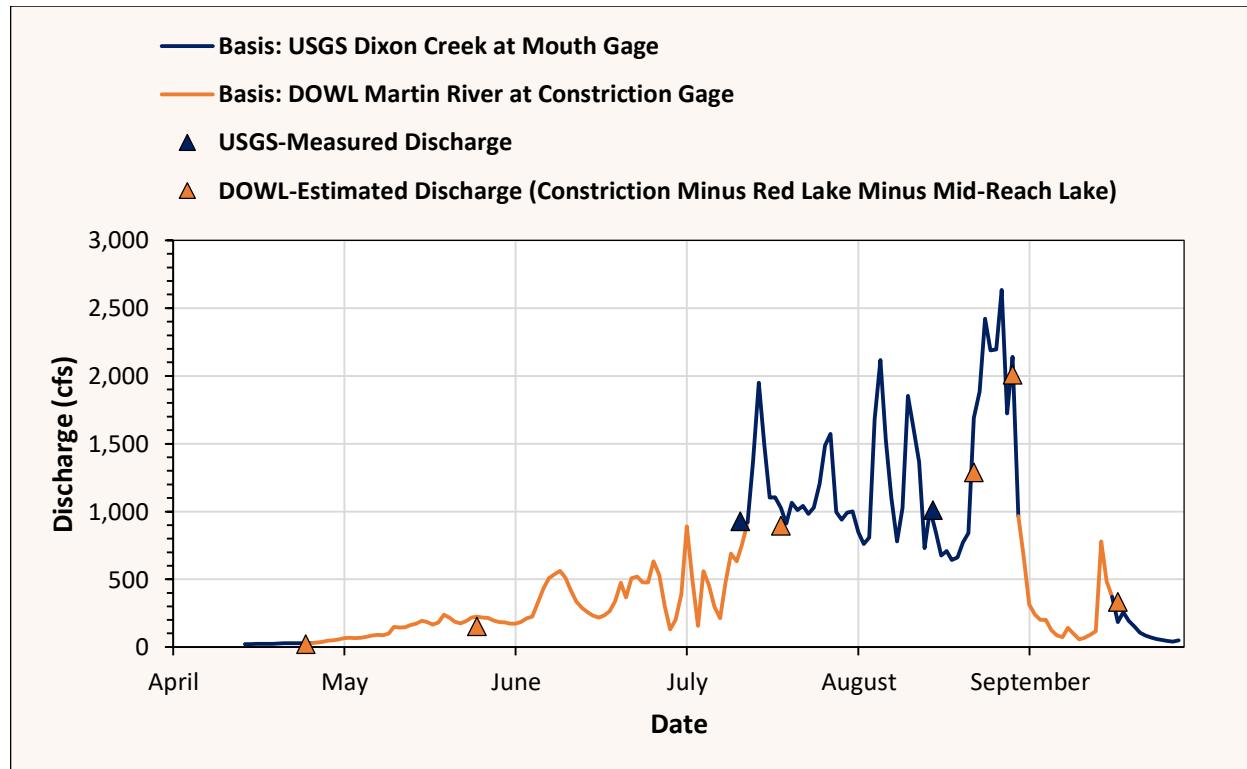
## RED LAKE BASIN OUTLET


Figure 16 presents the 2023 continuous streamflow record for the Martin River at Constriction gage. DOWL developed the continuous streamflow record by applying the gage rating curve in Figure 12 and filtering erroneous stage measurements from the dataset. Attachment 1 includes tabulated daily average discharge values. The data gap from April 28 to June 24 is reasonably filled out by interpolating between the available data.



**Figure 16. Red Lake Basin Outlet Continuous Streamflow Record**

## MID-REACH LAKE BASIN OUTLET

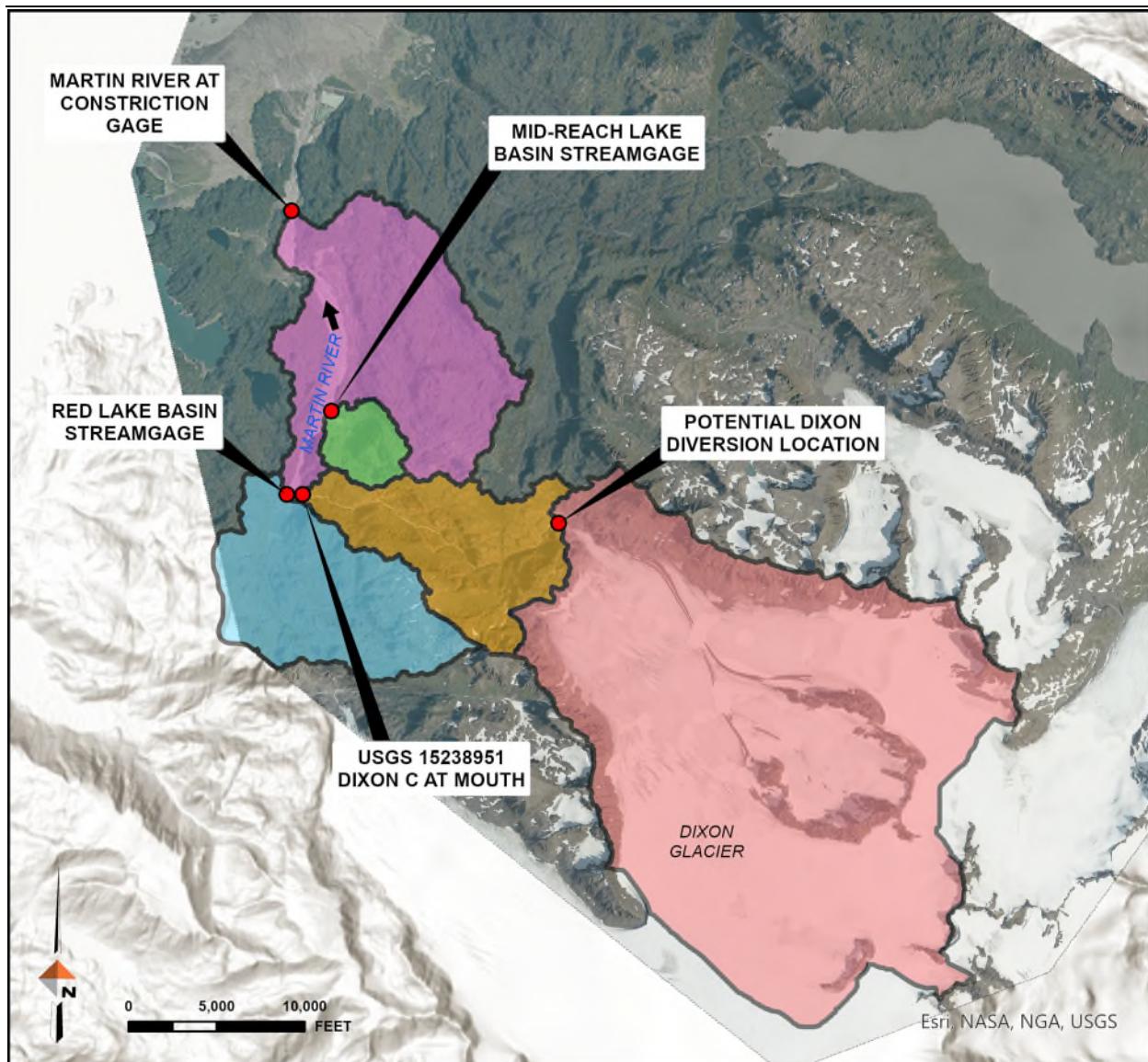

Figure 17 presents the 2023 continuous streamflow record for the Martin River at Constriction gage. DOWL developed the continuous streamflow record by applying the gage rating curve in Figure 13 and filtering erroneous stage measurements from the dataset. Attachment 1 includes tabulated daily average discharge values.



**Figure 17. Mid-Reach Lake Basin Outlet Continuous Streamflow Record**

## DIXON CREEK AT MOUTH

Given the data gaps in the Dixon Creek at Mouth and Martin River at Constriction datasets, DOWL used a combination of the datasets to develop a best-estimate daily average flow hydrograph for Dixon Creek at the Mouth. Figure 18 presents the best-estimate hydrograph, and Attachment 1 includes tabulated values.




**Figure 18. Dixon Creek at Mouth Best-Estimate Streamflow Record**

The 2023 Dixon Creek at Mouth hydrograph shown in Figure 18 is based on the following assumptions:

- DOWL assumes that Dixon Creek at Mouth discharge can be estimated by subtracting Red Lake and Mid-Reach Lake Basin discharge from Martin River at Constriction discharge. Inherent in this assumption is that the purple drainage shown in Figure 19 contributes negligibly to Martin River discharge. For comparison purposes, this is a 5.36 mi<sup>2</sup> area, the Red Lake Basin is a 3.56 mi<sup>2</sup> area, and the Red Lake Basin does not contribute significantly to Martin River Discharge. Both the purple drainage area and the Red Lake Basin share relatively similar, non-glaciated, hydrologic characteristics, although Red Lake itself may attenuate discharge in a way that the purple basin does not.
- The Martin River at Constriction streamgage rating curve is based on more measured data than the provisional Dixon Creek at Mouth streamgage rating curve. Therefore, DOWL assumes that when Martin River at Constriction data are available, a more accurate estimate of Dixon Creek at Mouth discharge is provided using the Constriction dataset as the estimate basis.
- For times when Martin River at Constriction discharge data are unavailable, DOWL filled the gaps in the dataset using provisional USGS Dixon Creek at Mouth stage data and the Figure 14 rating curve.

As more data become available (e.g., a USGS-published rating curve for Dixon Creek at the Mouth), DOWL will review and update discharge records as necessary.



**Figure 19. Martin River/Dixon Creek Drainage Basins**

## **Attachment 1: Tabulated Streamflow Data**

| Date      | Daily Average Discharge (cfs)    |                           |                                 |                                        |                                                       | Best Estimate of Dixon Creek at Mouth Discharge (cfs) | Basis of Best Estimate |
|-----------|----------------------------------|---------------------------|---------------------------------|----------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------|
|           | Martin River at Constriction [A] | Red Lake Basin Outlet [B] | Mid-Reach Lake Basin Outlet [C] | Dixon Creek at Mouth [D] = [A]-[B]-[C] | Dixon Creek at Mouth, using USGS Provisional Data [E] |                                                       |                        |
| 4/14/2023 | -                                | -                         | -                               | -                                      | 21                                                    | 21                                                    | USGS Mouth Gage [E]    |
| 4/15/2023 | -                                | -                         | -                               | -                                      | 21                                                    | 21                                                    | USGS Mouth Gage [E]    |
| 4/16/2023 | -                                | -                         | -                               | -                                      | 22                                                    | 22                                                    | USGS Mouth Gage [E]    |
| 4/17/2023 | -                                | -                         | -                               | -                                      | 22                                                    | 22                                                    | USGS Mouth Gage [E]    |
| 4/18/2023 | -                                | -                         | -                               | -                                      | 22                                                    | 22                                                    | USGS Mouth Gage [E]    |
| 4/19/2023 | -                                | -                         | -                               | -                                      | 22                                                    | 22                                                    | USGS Mouth Gage [E]    |
| 4/20/2023 | -                                | -                         | -                               | -                                      | 24                                                    | 24                                                    | USGS Mouth Gage [E]    |
| 4/21/2023 | -                                | -                         | -                               | -                                      | 26                                                    | 26                                                    | USGS Mouth Gage [E]    |
| 4/22/2023 | -                                | -                         | -                               | -                                      | 29                                                    | 29                                                    | USGS Mouth Gage [E]    |
| 4/23/2023 | -                                | -                         | -                               | -                                      | 29                                                    | 29                                                    | USGS Mouth Gage [E]    |
| 4/24/2023 | -                                | -                         | -                               | -                                      | 27                                                    | 27                                                    | USGS Mouth Gage [E]    |
| 4/25/2023 | -                                | 1.8                       | 1.5                             | -                                      | 26                                                    | 26                                                    | USGS Mouth Gage [E]    |

| Date      | Daily Average Discharge (cfs)    |                           |                                 |                                        |                                                       | Best Estimate of Dixon Creek at Mouth Discharge (cfs) | Basis of Best Estimate     |
|-----------|----------------------------------|---------------------------|---------------------------------|----------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------|
|           | Martin River at Constriction [A] | Red Lake Basin Outlet [B] | Mid-Reach Lake Basin Outlet [C] | Dixon Creek at Mouth [D] = [A]-[B]-[C] | Dixon Creek at Mouth, using USGS Provisional Data [E] |                                                       |                            |
| 4/26/2023 | 30.9                             | 2.0                       | 1.5                             | 27.4                                   | 26                                                    | 27                                                    | DOWL Constriction Gage [D] |
| 4/27/2023 | 34.5                             | 2.2                       | 1.4                             | 30.9                                   | 26                                                    | 31                                                    | DOWL Constriction Gage [D] |
| 4/28/2023 | 40.6                             | 2.6                       | 1.5                             | 36.5                                   | 28                                                    | 37                                                    | DOWL Constriction Gage [D] |
| 4/29/2023 | 50.2                             | 3.4                       | 1.7                             | 45.1                                   | 29                                                    | 45                                                    | DOWL Constriction Gage [D] |
| 4/30/2023 | 53.9                             | 4.5                       | 1.7                             | 47.7                                   | 29                                                    | 48                                                    | DOWL Constriction Gage [D] |
| 5/1/2023  | 64.2                             | 5.9                       | 2.0                             | 56.3                                   | 30                                                    | 56                                                    | DOWL Constriction Gage [D] |
| 5/2/2023  | 74.3                             | 7.6                       | 1.7                             | 65.0                                   | 32                                                    | 65                                                    | DOWL Constriction Gage [D] |
| 5/3/2023  | 78.7                             | 8.9                       | 2.3                             | 67.5                                   | 31                                                    | 68                                                    | DOWL Constriction Gage [D] |
| 5/4/2023  | 76.5                             | 9.6                       | 2.3                             | 64.6                                   | 30                                                    | 65                                                    | DOWL Constriction Gage [D] |
| 5/5/2023  | 80.3                             | 10.3                      | 2.2                             | 67.8                                   | 31                                                    | 68                                                    | DOWL Constriction Gage [D] |
| 5/6/2023  | 88.4                             | 11.4                      | 2.7                             | 74.3                                   | 34                                                    | 74                                                    | DOWL Constriction Gage [D] |
| 5/7/2023  | 99.9                             | 14.2                      | 3.1                             | 82.6                                   | 39                                                    | 83                                                    | DOWL Constriction Gage [D] |

| Date      | Daily Average Discharge (cfs)    |                           |                                 |                                        |                                                       | Best Estimate of Dixon Creek at Mouth Discharge (cfs) | Basis of Best Estimate     |
|-----------|----------------------------------|---------------------------|---------------------------------|----------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------|
|           | Martin River at Constriction [A] | Red Lake Basin Outlet [B] | Mid-Reach Lake Basin Outlet [C] | Dixon Creek at Mouth [D] = [A]-[B]-[C] | Dixon Creek at Mouth, using USGS Provisional Data [E] |                                                       |                            |
| 5/8/2023  | 110.5                            | 18.1                      | 3.6                             | 88.8                                   | 40                                                    | 89                                                    | DOWL Constriction Gage [D] |
| 5/9/2023  | 107.1                            | 18.6                      | 3.6                             | 84.9                                   | 38                                                    | 85                                                    | DOWL Constriction Gage [D] |
| 5/10/2023 | 123.7                            | 21.9                      | 3.6                             | 98.2                                   | 50                                                    | 98                                                    | DOWL Constriction Gage [D] |
| 5/11/2023 | 188.0                            | 36.5                      | 4.0                             | 147.5                                  | 81                                                    | 148                                                   | DOWL Constriction Gage [D] |
| 5/12/2023 | 192.1                            | 43.7                      | 5.1                             | 143.3                                  | 63                                                    | 143                                                   | DOWL Constriction Gage [D] |
| 5/13/2023 | 193.4                            | 44.4                      | 5.5                             | 143.5                                  | 71                                                    | 144                                                   | DOWL Constriction Gage [D] |
| 5/14/2023 | 223.1                            | 56.2                      | 5.9                             | 161.0                                  | 81                                                    | 161                                                   | DOWL Constriction Gage [D] |
| 5/15/2023 | 242.8                            | 65.8                      | 6.3                             | 170.7                                  | 90                                                    | 171                                                   | DOWL Constriction Gage [D] |
| 5/16/2023 | 285.2                            | 87.7                      | 6.9                             | 190.6                                  | 119                                                   | 191                                                   | DOWL Constriction Gage [D] |
| 5/17/2023 | 262.7                            | 72.8                      | 6.8                             | 183.1                                  | 88                                                    | 183                                                   | DOWL Constriction Gage [D] |
| 5/18/2023 | 215.4                            | 47.0                      | 4.8                             | 163.6                                  | 73                                                    | 164                                                   | DOWL Constriction Gage [D] |
| 5/19/2023 | 229.2                            | 44.2                      | 3.6                             | 181.4                                  | 114                                                   | 181                                                   | DOWL Constriction Gage [D] |

| Date      | Daily Average Discharge (cfs)    |                           |                                 |                                        |                                                       | Best Estimate of Dixon Creek at Mouth Discharge (cfs) | Basis of Best Estimate     |
|-----------|----------------------------------|---------------------------|---------------------------------|----------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------|
|           | Martin River at Constriction [A] | Red Lake Basin Outlet [B] | Mid-Reach Lake Basin Outlet [C] | Dixon Creek at Mouth [D] = [A]-[B]-[C] | Dixon Creek at Mouth, using USGS Provisional Data [E] |                                                       |                            |
| 5/20/2023 | 298.5                            | 54.2                      | 4.3                             | 240.0                                  | 160                                                   | 240                                                   | DOWL Constriction Gage [D] |
| 5/21/2023 | 259.4                            | 40.5                      | 3.4                             | 215.5                                  | 122                                                   | 216                                                   | DOWL Constriction Gage [D] |
| 5/22/2023 | 220.1                            | 32.3                      | 2.8                             | 185.0                                  | 94                                                    | 185                                                   | DOWL Constriction Gage [D] |
| 5/23/2023 | 206.8                            | 30.3                      | 2.5                             | 174.0                                  | 90                                                    | 174                                                   | DOWL Constriction Gage [D] |
| 5/24/2023 | 224.6                            | 32.9                      | 2.4                             | 189.3                                  | 113                                                   | 189                                                   | DOWL Constriction Gage [D] |
| 5/25/2023 | 251.5                            | 31.7                      | 2.5                             | 217.3                                  | 140                                                   | 217                                                   | DOWL Constriction Gage [D] |
| 5/26/2023 | 260.7                            | 32.1                      | 2.4                             | 226.2                                  | 135                                                   | 226                                                   | DOWL Constriction Gage [D] |
| 5/27/2023 | 251.4                            | 30.1                      | 2.2                             | 219.1                                  | 118                                                   | 219                                                   | DOWL Constriction Gage [D] |
| 5/28/2023 | 244.0                            | 29.5                      | 1.1                             | 213.4                                  | 108                                                   | 213                                                   | DOWL Constriction Gage [D] |
| 5/29/2023 | 225.0                            | 28.9                      | 2.0                             | 194.1                                  | 95                                                    | 194                                                   | DOWL Constriction Gage [D] |
| 5/30/2023 | 212.0                            | 28.3                      | 1.8                             | 181.9                                  | 93                                                    | 182                                                   | DOWL Constriction Gage [D] |
| 5/31/2023 | 210.7                            | 27.6                      | 1.7                             | 181.4                                  | 96                                                    | 181                                                   | DOWL Constriction Gage [D] |

| Date      | Daily Average Discharge (cfs)    |                           |                                 |                                        |                                                       | Best Estimate of Dixon Creek at Mouth Discharge (cfs) | Basis of Best Estimate     |
|-----------|----------------------------------|---------------------------|---------------------------------|----------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------|
|           | Martin River at Constriction [A] | Red Lake Basin Outlet [B] | Mid-Reach Lake Basin Outlet [C] | Dixon Creek at Mouth [D] = [A]-[B]-[C] | Dixon Creek at Mouth, using USGS Provisional Data [E] |                                                       |                            |
| 6/1/2023  | 199.3                            | 27.0                      | 1.6                             | 170.7                                  | 92                                                    | 171                                                   | DOWL Constriction Gage [D] |
| 6/2/2023  | 198.4                            | 26.4                      | 1.5                             | 170.5                                  | 97                                                    | 171                                                   | DOWL Constriction Gage [D] |
| 6/3/2023  | 210.5                            | 25.8                      | 1.2                             | 183.5                                  | 114                                                   | 184                                                   | DOWL Constriction Gage [D] |
| 6/4/2023  | 237.3                            | 25.2                      | 1.2                             | 210.9                                  | 139                                                   | 211                                                   | DOWL Constriction Gage [D] |
| 6/5/2023  | 249.4                            | 24.6                      | 1.2                             | 223.6                                  | 151                                                   | 224                                                   | DOWL Constriction Gage [D] |
| 6/6/2023  | 355.9                            | 24.0                      | 0.9                             | 331.0                                  | 330                                                   | 331                                                   | DOWL Constriction Gage [D] |
| 6/7/2023  | 456.5                            | 23.3                      | 1.1                             | 432.1                                  | 438                                                   | 432                                                   | DOWL Constriction Gage [D] |
| 6/8/2023  | 532.0                            | 22.7                      | 1.1                             | 508.2                                  | 493                                                   | 508                                                   | DOWL Constriction Gage [D] |
| 6/9/2023  | 558.7                            | 22.1                      | 1.1                             | 535.5                                  | 531                                                   | 536                                                   | DOWL Constriction Gage [D] |
| 6/10/2023 | 585.9                            | 21.5                      | 1.1                             | 563.3                                  | 543                                                   | 563                                                   | DOWL Constriction Gage [D] |
| 6/11/2023 | 532.2                            | 20.9                      | 1.2                             | 510.1                                  | 554                                                   | 510                                                   | DOWL Constriction Gage [D] |
| 6/12/2023 | 438.1                            | 20.3                      | 1.2                             | 416.6                                  | 422                                                   | 417                                                   | DOWL Constriction Gage [D] |

| Date      | Daily Average Discharge (cfs)    |                           |                                 |                                        |                                                       | Best Estimate of Dixon Creek at Mouth Discharge (cfs) | Basis of Best Estimate     |
|-----------|----------------------------------|---------------------------|---------------------------------|----------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------|
|           | Martin River at Constriction [A] | Red Lake Basin Outlet [B] | Mid-Reach Lake Basin Outlet [C] | Dixon Creek at Mouth [D] = [A]-[B]-[C] | Dixon Creek at Mouth, using USGS Provisional Data [E] |                                                       |                            |
| 6/13/2023 | 356.8                            | 19.7                      | 1.2                             | 335.9                                  | 387                                                   | 336                                                   | DOWL Constriction Gage [D] |
| 6/14/2023 | 308.1                            | 19.0                      | 1.2                             | 287.9                                  | 338                                                   | 288                                                   | DOWL Constriction Gage [D] |
| 6/15/2023 | 277.5                            | 18.4                      | 1.1                             | 258.0                                  | 279                                                   | 258                                                   | DOWL Constriction Gage [D] |
| 6/16/2023 | 250.1                            | 17.8                      | 1.0                             | 231.3                                  | 248                                                   | 231                                                   | DOWL Constriction Gage [D] |
| 6/17/2023 | 234.7                            | 17.2                      | 0.9                             | 216.6                                  | 236                                                   | 217                                                   | DOWL Constriction Gage [D] |
| 6/18/2023 | 252.2                            | 16.6                      | 0.8                             | 234.8                                  | 287                                                   | 235                                                   | DOWL Constriction Gage [D] |
| 6/19/2023 | 283.0                            | 16.0                      | 0.7                             | 266.3                                  | 364                                                   | 266                                                   | DOWL Constriction Gage [D] |
| 6/20/2023 | 354.9                            | 15.4                      | 0.7                             | 338.8                                  | 411                                                   | 339                                                   | DOWL Constriction Gage [D] |
| 6/21/2023 | 491.2                            | 14.7                      | 0.8                             | 475.7                                  | 555                                                   | 476                                                   | DOWL Constriction Gage [D] |
| 6/22/2023 | 381.5                            | 14.1                      | 0.8                             | 366.6                                  | 850                                                   | 367                                                   | DOWL Constriction Gage [D] |
| 6/23/2023 | 522.8                            | 13.5                      | 0.9                             | 508.4                                  | 968                                                   | 508                                                   | DOWL Constriction Gage [D] |
| 6/24/2023 | 533.7                            | 12.9                      | 0.9                             | 519.9                                  | 1,169                                                 | 520                                                   | DOWL Constriction Gage [D] |

| Date      | Daily Average Discharge (cfs)    |                           |                                 |                                        |                                                       | Best Estimate of Dixon Creek at Mouth Discharge (cfs) | Basis of Best Estimate     |
|-----------|----------------------------------|---------------------------|---------------------------------|----------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------|
|           | Martin River at Constriction [A] | Red Lake Basin Outlet [B] | Mid-Reach Lake Basin Outlet [C] | Dixon Creek at Mouth [D] = [A]-[B]-[C] | Dixon Creek at Mouth, using USGS Provisional Data [E] |                                                       |                            |
| 6/25/2023 | 494.4                            | 15.8                      | 1.4                             | 477.2                                  | 1,371                                                 | 477                                                   | DOWL Constriction Gage [D] |
| 6/26/2023 | 494.2                            | 16.4                      | 1.3                             | 476.5                                  | 1,071                                                 | 477                                                   | DOWL Constriction Gage [D] |
| 6/27/2023 | 647.4                            | 13.5                      | 1.3                             | 632.6                                  | 1,157                                                 | 633                                                   | DOWL Constriction Gage [D] |
| 6/28/2023 | 546.3                            | 13.0                      | 1.3                             | 532.0                                  | 1,047                                                 | 532                                                   | DOWL Constriction Gage [D] |
| 6/29/2023 | 316.7                            | 12.5                      | 1.2                             | 303.0                                  | 778                                                   | 303                                                   | DOWL Constriction Gage [D] |
| 6/30/2023 | 140.4                            | 11.4                      | 1.1                             | 127.9                                  | 629                                                   | 128                                                   | DOWL Constriction Gage [D] |
| 7/1/2023  | 211.2                            | 10.9                      | 1.1                             | 199.2                                  | 519                                                   | 199                                                   | DOWL Constriction Gage [D] |
| 7/2/2023  | 401.2                            | 10.0                      | 1.1                             | 390.1                                  | 1,014                                                 | 390                                                   | DOWL Constriction Gage [D] |
| 7/3/2023  | 901.3                            | 10.2                      | 1.2                             | 889.9                                  | 1,265                                                 | 890                                                   | DOWL Constriction Gage [D] |
| 7/4/2023  | 515.6                            | 9.8                       | 1.1                             | 504.7                                  | 1,079                                                 | 505                                                   | DOWL Constriction Gage [D] |
| 7/5/2023  | 163.7                            | 8.8                       | 1.1                             | 153.8                                  | 1,176                                                 | 154                                                   | DOWL Constriction Gage [D] |
| 7/6/2023  | 570.2                            | 8.8                       | 1.2                             | 560.2                                  | 1,162                                                 | 560                                                   | DOWL Constriction Gage [D] |

| Date      | Daily Average Discharge (cfs)    |                           |                                 |                                        |                                                       | Best Estimate of Dixon Creek at Mouth Discharge (cfs) | Basis of Best Estimate     |
|-----------|----------------------------------|---------------------------|---------------------------------|----------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------|
|           | Martin River at Constriction [A] | Red Lake Basin Outlet [B] | Mid-Reach Lake Basin Outlet [C] | Dixon Creek at Mouth [D] = [A]-[B]-[C] | Dixon Creek at Mouth, using USGS Provisional Data [E] |                                                       |                            |
| 7/7/2023  | 469.8                            | 8.8                       | 1.6                             | 459.4                                  | 1,254                                                 | 459                                                   | DOWL Constriction Gage [D] |
| 7/8/2023  | 309.1                            | 8.3                       | 1.1                             | 299.7                                  | 934                                                   | 300                                                   | DOWL Constriction Gage [D] |
| 7/9/2023  | 218.4                            | 7.3                       | 1.0                             | 210.1                                  | 821                                                   | 210                                                   | DOWL Constriction Gage [D] |
| 7/10/2023 | 484.1                            | 6.6                       | 0.9                             | 476.6                                  | 827                                                   | 477                                                   | DOWL Constriction Gage [D] |
| 7/11/2023 | 696.6                            | 6.1                       | 0.9                             | 689.6                                  | 1,067                                                 | 690                                                   | DOWL Constriction Gage [D] |
| 7/12/2023 | 640.4                            | 5.8                       | 0.9                             | 633.7                                  | 913                                                   | 634                                                   | DOWL Constriction Gage [D] |
| 7/13/2023 | 766.1                            | 5.4                       | 0.9                             | 759.8                                  | 922                                                   | 760                                                   | DOWL Constriction Gage [D] |
| 7/14/2023 | 767.8                            | 5.1                       | 0.8                             | 761.9                                  | 920                                                   | 920                                                   | USGS Mouth Gage [E]        |
| 7/15/2023 | 795.3                            | 5.2                       | 0.9                             | 789.2                                  | 1,370                                                 | 1,370                                                 | USGS Mouth Gage [E]        |
| 7/16/2023 | -                                | 5.6                       | 1.2                             | -                                      | 1,949                                                 | 1,949                                                 | USGS Mouth Gage [E]        |
| 7/17/2023 | -                                | 5.7                       | 1.1                             | -                                      | 1,496                                                 | 1,496                                                 | USGS Mouth Gage [E]        |
| 7/18/2023 | -                                | 5.4                       | 1.0                             | -                                      | 1,102                                                 | 1,102                                                 | USGS Mouth Gage [E]        |

| Date      | Daily Average Discharge (cfs)    |                           |                                 |                                        |                                                       | Best Estimate of Dixon Creek at Mouth Discharge (cfs) | Basis of Best Estimate |
|-----------|----------------------------------|---------------------------|---------------------------------|----------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------|
|           | Martin River at Constriction [A] | Red Lake Basin Outlet [B] | Mid-Reach Lake Basin Outlet [C] | Dixon Creek at Mouth [D] = [A]-[B]-[C] | Dixon Creek at Mouth, using USGS Provisional Data [E] |                                                       |                        |
| 7/19/2023 | -                                | 5.1                       | 1.0                             | -                                      | 1,106                                                 | 1,106                                                 | USGS Mouth Gage [E]    |
| 7/20/2023 | -                                | 5.1                       | 1.0                             | -                                      | 1,026                                                 | 1,026                                                 | USGS Mouth Gage [E]    |
| 7/21/2023 | -                                | 4.4                       | 0.9                             | -                                      | 912                                                   | 912                                                   | USGS Mouth Gage [E]    |
| 7/22/2023 | -                                | 4.5                       | 0.9                             | -                                      | 1,066                                                 | 1,066                                                 | USGS Mouth Gage [E]    |
| 7/23/2023 | -                                | 4.3                       | 0.9                             | -                                      | 1,011                                                 | 1,011                                                 | USGS Mouth Gage [E]    |
| 7/24/2023 | -                                | 4.0                       | 0.9                             | -                                      | 1,041                                                 | 1,041                                                 | USGS Mouth Gage [E]    |
| 7/25/2023 | -                                | 3.8                       | 0.8                             | -                                      | 983                                                   | 983                                                   | USGS Mouth Gage [E]    |
| 7/26/2023 | -                                | 3.6                       | 0.8                             | -                                      | 1,030                                                 | 1,030                                                 | USGS Mouth Gage [E]    |
| 7/27/2023 | -                                | 3.3                       | 0.8                             | -                                      | 1,204                                                 | 1,204                                                 | USGS Mouth Gage [E]    |
| 7/28/2023 | -                                | 3.2                       | 0.8                             | -                                      | 1,487                                                 | 1,487                                                 | USGS Mouth Gage [E]    |
| 7/29/2023 | -                                | 3.1                       | 0.9                             | -                                      | 1,573                                                 | 1,573                                                 | USGS Mouth Gage [E]    |
| 7/30/2023 | -                                | 3.0                       | 0.9                             | -                                      | 996                                                   | 996                                                   | USGS Mouth Gage [E]    |

| Date      | Daily Average Discharge (cfs)    |                           |                                 |                                        |                                                       | Best Estimate of Dixon Creek at Mouth Discharge (cfs) | Basis of Best Estimate |
|-----------|----------------------------------|---------------------------|---------------------------------|----------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------|
|           | Martin River at Constriction [A] | Red Lake Basin Outlet [B] | Mid-Reach Lake Basin Outlet [C] | Dixon Creek at Mouth [D] = [A]-[B]-[C] | Dixon Creek at Mouth, using USGS Provisional Data [E] |                                                       |                        |
| 7/31/2023 | -                                | 2.7                       | 0.8                             | -                                      | 941                                                   | 941                                                   | USGS Mouth Gage [E]    |
| 8/1/2023  | -                                | 2.8                       | 0.7                             | -                                      | 991                                                   | 991                                                   | USGS Mouth Gage [E]    |
| 8/2/2023  | -                                | 2.6                       | 0.6                             | -                                      | 1,001                                                 | 1,001                                                 | USGS Mouth Gage [E]    |
| 8/3/2023  | -                                | 2.3                       | 0.6                             | -                                      | 848                                                   | 848                                                   | USGS Mouth Gage [E]    |
| 8/4/2023  | -                                | 2.1                       | 0.6                             | -                                      | 760                                                   | 760                                                   | USGS Mouth Gage [E]    |
| 8/5/2023  | -                                | 2.2                       | 0.4                             | -                                      | 808                                                   | 808                                                   | USGS Mouth Gage [E]    |
| 8/6/2023  | -                                | 2.3                       | 0.7                             | -                                      | 1,681                                                 | 1,681                                                 | USGS Mouth Gage [E]    |
| 8/7/2023  | -                                | 2.2                       | 0.9                             | -                                      | 2,117                                                 | 2,117                                                 | USGS Mouth Gage [E]    |
| 8/8/2023  | -                                | 2.1                       | 0.8                             | -                                      | 1,527                                                 | 1,527                                                 | USGS Mouth Gage [E]    |
| 8/9/2023  | -                                | 1.8                       | 0.8                             | -                                      | 1,104                                                 | 1,104                                                 | USGS Mouth Gage [E]    |
| 8/10/2023 | -                                | 1.9                       | 0.6                             | -                                      | 779                                                   | 779                                                   | USGS Mouth Gage [E]    |
| 8/11/2023 | -                                | 1.8                       | 0.6                             | -                                      | 1,025                                                 | 1,025                                                 | USGS Mouth Gage [E]    |

| Date      | Daily Average Discharge (cfs)    |                           |                                 |                                        |                                                       | Best Estimate of Dixon Creek at Mouth Discharge (cfs) | Basis of Best Estimate |
|-----------|----------------------------------|---------------------------|---------------------------------|----------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------|
|           | Martin River at Constriction [A] | Red Lake Basin Outlet [B] | Mid-Reach Lake Basin Outlet [C] | Dixon Creek at Mouth [D] = [A]-[B]-[C] | Dixon Creek at Mouth, using USGS Provisional Data [E] |                                                       |                        |
| 8/12/2023 | -                                | 1.9                       | 0.8                             | -                                      | 1,854                                                 | 1,854                                                 | USGS Mouth Gage [E]    |
| 8/13/2023 | -                                | 1.8                       | 1.0                             | -                                      | 1,619                                                 | 1,619                                                 | USGS Mouth Gage [E]    |
| 8/14/2023 | -                                | 1.8                       | 0.8                             | -                                      | 1,365                                                 | 1,365                                                 | USGS Mouth Gage [E]    |
| 8/15/2023 | -                                | 1.8                       | 0.8                             | -                                      | 731                                                   | 731                                                   | USGS Mouth Gage [E]    |
| 8/16/2023 | -                                | 2.0                       | 0.8                             | -                                      | 1,015                                                 | 1,015                                                 | USGS Mouth Gage [E]    |
| 8/17/2023 | -                                | 1.9                       | 0.8                             | -                                      | 851                                                   | 851                                                   | USGS Mouth Gage [E]    |
| 8/18/2023 | -                                | 1.7                       | 0.5                             | -                                      | 675                                                   | 675                                                   | USGS Mouth Gage [E]    |
| 8/19/2023 | -                                | 1.6                       | 0.5                             | -                                      | 708                                                   | 708                                                   | USGS Mouth Gage [E]    |
| 8/20/2023 | -                                | 1.6                       | 0.4                             | -                                      | 642                                                   | 642                                                   | USGS Mouth Gage [E]    |
| 8/21/2023 | -                                | 1.6                       | 0.5                             | -                                      | 661                                                   | 661                                                   | USGS Mouth Gage [E]    |
| 8/22/2023 | -                                | 1.5                       | 0.5                             | -                                      | 773                                                   | 773                                                   | USGS Mouth Gage [E]    |
| 8/23/2023 | -                                | 1.4                       | 0.5                             | -                                      | 841                                                   | 841                                                   | USGS Mouth Gage [E]    |

| Date      | Daily Average Discharge (cfs)    |                           |                                 |                                        |                                                       | Best Estimate of Dixon Creek at Mouth Discharge (cfs) | Basis of Best Estimate     |
|-----------|----------------------------------|---------------------------|---------------------------------|----------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------|
|           | Martin River at Constriction [A] | Red Lake Basin Outlet [B] | Mid-Reach Lake Basin Outlet [C] | Dixon Creek at Mouth [D] = [A]-[B]-[C] | Dixon Creek at Mouth, using USGS Provisional Data [E] |                                                       |                            |
| 8/24/2023 | -                                | 1.5                       | 0.6                             | -                                      | 1,690                                                 | 1,690                                                 | USGS Mouth Gage [E]        |
| 8/25/2023 | -                                | 1.5                       | 1.3                             | -                                      | 1,884                                                 | 1,884                                                 | USGS Mouth Gage [E]        |
| 8/26/2023 | -                                | 2.1                       | 79.4                            | -                                      | 2,422                                                 | 2,422                                                 | USGS Mouth Gage [E]        |
| 8/27/2023 | -                                | 1.9                       | 45.7                            | -                                      | 2,187                                                 | 2,187                                                 | USGS Mouth Gage [E]        |
| 8/28/2023 | -                                | 1.9                       | 11.7                            | -                                      | 2,196                                                 | 2,196                                                 | USGS Mouth Gage [E]        |
| 8/29/2023 | -                                | 2.0                       | 28.6                            | -                                      | 2,635                                                 | 2,635                                                 | USGS Mouth Gage [E]        |
| 8/30/2023 | -                                | 1.8                       | 4.5                             | -                                      | 1,723                                                 | 1,723                                                 | USGS Mouth Gage [E]        |
| 8/31/2023 | -                                | 2.1                       | 20.2                            | -                                      | 2,141                                                 | 2,141                                                 | USGS Mouth Gage [E]        |
| 9/1/2023  | 970.3                            | 2.1                       | 3.5                             | 964.7                                  | 1,102                                                 | 965                                                   | DOWL Constriction Gage [D] |
| 9/2/2023  | 664.8                            | 2.0                       | 1.6                             | 661.2                                  | 711                                                   | 661                                                   | DOWL Constriction Gage [D] |
| 9/3/2023  | 317.7                            | 2.1                       | 1.4                             | 314.2                                  | 529                                                   | 314                                                   | DOWL Constriction Gage [D] |
| 9/4/2023  | 243.2                            | 2.0                       | 1.2                             | 240.0                                  | 362                                                   | 240                                                   | DOWL Constriction Gage [D] |

| Date      | Daily Average Discharge (cfs)    |                           |                                 |                                        |                                                       | Best Estimate of Dixon Creek at Mouth Discharge (cfs) | Basis of Best Estimate     |
|-----------|----------------------------------|---------------------------|---------------------------------|----------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------|
|           | Martin River at Constriction [A] | Red Lake Basin Outlet [B] | Mid-Reach Lake Basin Outlet [C] | Dixon Creek at Mouth [D] = [A]-[B]-[C] | Dixon Creek at Mouth, using USGS Provisional Data [E] |                                                       |                            |
| 9/5/2023  | 202.4                            | 2.0                       | 1.1                             | 199.3                                  | 260                                                   | 199                                                   | DOWL Constriction Gage [D] |
| 9/6/2023  | 202.7                            | 2.0                       | 1.0                             | 199.7                                  | 287                                                   | 200                                                   | DOWL Constriction Gage [D] |
| 9/7/2023  | 127.2                            | 2.0                       | 1.0                             | 124.2                                  | 174                                                   | 124                                                   | DOWL Constriction Gage [D] |
| 9/8/2023  | 86.6                             | 2.1                       | 1.0                             | 83.5                                   | 118                                                   | 84                                                    | DOWL Constriction Gage [D] |
| 9/9/2023  | 74.2                             | 2.0                       | 0.9                             | 71.3                                   | 117                                                   | 71                                                    | DOWL Constriction Gage [D] |
| 9/10/2023 | 143.4                            | 2.1                       | 1.0                             | 140.3                                  | 181                                                   | 140                                                   | DOWL Constriction Gage [D] |
| 9/11/2023 | 99.8                             | 2.0                       | 1.0                             | 96.8                                   | 133                                                   | 97                                                    | DOWL Constriction Gage [D] |
| 9/12/2023 | 60.3                             | 2.0                       | 0.9                             | 57.4                                   | 112                                                   | 57                                                    | DOWL Constriction Gage [D] |
| 9/13/2023 | 71.0                             | 2.0                       | 0.9                             | 68.1                                   | 116                                                   | 68                                                    | DOWL Constriction Gage [D] |
| 9/14/2023 | 90.1                             | 2.1                       | 0.9                             | 87.1                                   | 132                                                   | 87                                                    | DOWL Constriction Gage [D] |
| 9/15/2023 | 118.5                            | 2.2                       | 0.9                             | 115.4                                  | 272                                                   | 115                                                   | DOWL Constriction Gage [D] |
| 9/16/2023 | 783.3                            | 2.7                       | 1.4                             | 779.2                                  | 1,151                                                 | 779                                                   | DOWL Constriction Gage [D] |

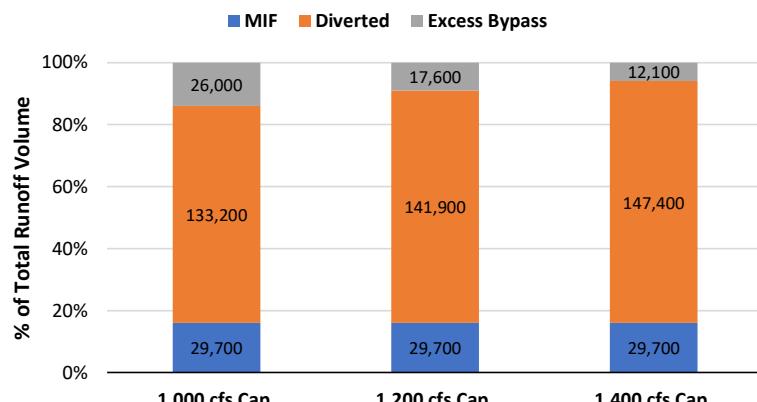
| Date      | Daily Average Discharge (cfs)    |                           |                                 |                                        |                                                       | Best Estimate of Dixon Creek at Mouth Discharge (cfs) | Basis of Best Estimate     |
|-----------|----------------------------------|---------------------------|---------------------------------|----------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------|
|           | Martin River at Constriction [A] | Red Lake Basin Outlet [B] | Mid-Reach Lake Basin Outlet [C] | Dixon Creek at Mouth [D] = [A]-[B]-[C] | Dixon Creek at Mouth, using USGS Provisional Data [E] |                                                       |                            |
| 9/17/2023 | 491.6                            | 4.9                       | 1.8                             | 484.9                                  | 884                                                   | 485                                                   | DOWL Constriction Gage [D] |
| 9/18/2023 | 294.6                            | 9.9                       | 1.9                             | 282.8                                  | 371                                                   | 371                                                   | USGS Mouth Gage [E]        |
| 9/19/2023 | -                                | -                         | -                               | -                                      | 183                                                   | 183                                                   | USGS Mouth Gage [E]        |
| 9/20/2023 | -                                | -                         | -                               | -                                      | 257                                                   | 257                                                   | USGS Mouth Gage [E]        |
| 9/21/2023 | -                                | -                         | -                               | -                                      | 192                                                   | 192                                                   | USGS Mouth Gage [E]        |
| 9/22/2023 | -                                | -                         | -                               | -                                      | 149                                                   | 149                                                   | USGS Mouth Gage [E]        |
| 9/23/2023 | -                                | -                         | -                               | -                                      | 104                                                   | 104                                                   | USGS Mouth Gage [E]        |
| 9/24/2023 | -                                | -                         | -                               | -                                      | 83                                                    | 83                                                    | USGS Mouth Gage [E]        |
| 9/25/2023 | -                                | -                         | -                               | -                                      | 69                                                    | 69                                                    | USGS Mouth Gage [E]        |
| 9/26/2023 | -                                | -                         | -                               | -                                      | 57                                                    | 57                                                    | USGS Mouth Gage [E]        |
| 9/27/2023 | -                                | -                         | -                               | -                                      | 50                                                    | 50                                                    | USGS Mouth Gage [E]        |
| 9/28/2023 | -                                | -                         | -                               | -                                      | 43                                                    | 43                                                    | USGS Mouth Gage [E]        |

| Date      | Daily Average Discharge (cfs)    |                           |                                 |                                        |                                                       | Best Estimate of Dixon Creek at Mouth Discharge (cfs) | Basis of Best Estimate |
|-----------|----------------------------------|---------------------------|---------------------------------|----------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------|
|           | Martin River at Constriction [A] | Red Lake Basin Outlet [B] | Mid-Reach Lake Basin Outlet [C] | Dixon Creek at Mouth [D] = [A]-[B]-[C] | Dixon Creek at Mouth, using USGS Provisional Data [E] |                                                       |                        |
| 9/29/2023 | -                                | -                         | -                               | -                                      | 39                                                    | 39                                                    | USGS Mouth Gage [E]    |
| 9/30/2023 | -                                | -                         | -                               | -                                      | 49                                                    | 49                                                    | USGS Mouth Gage [E]    |

## **Appendix B: Operational Model Results**

## OPERATIONAL MODEL

### USING SYNTHETIC RECORD


#### INPUT

##### Minimum Instream Flow (MIF)

|            |     |     |
|------------|-----|-----|
| May:       | 100 | cfs |
| June:      | 100 | cfs |
| July:      | 100 | cfs |
| August:    | 100 | cfs |
| September: | 100 | cfs |
| October:   | 100 | cfs |

##### Diversion Tunnel Capacity

|             |       |     |
|-------------|-------|-----|
| Scenario 1: | 1,000 | cfs |
| Scenario 2: | 1,200 | cfs |
| Scenario 3: | 1,400 | cfs |



##### Statistical Range

|             |      |
|-------------|------|
| Start Year: | 1980 |
| End Year:   | 2022 |

All Data  40-yr Record  30-yr Record  20-yr Record  10-yr Record

#### OUTPUT

| Scenario 1: 1,000 cfs Tunnel Capacity |                  |        |          |                         |            |          |                         |
|---------------------------------------|------------------|--------|----------|-------------------------|------------|----------|-------------------------|
| Month                                 | Volume (acre-ft) |        |          |                         | Percentage |          |                         |
|                                       | Total Runoff     | MIF    | Diverted | Bypass in Excess of MIF | MIF        | Diverted | Bypass in Excess of MIF |
| May                                   | 2,800            | 2,100  | 600      | 0                       | 75%        | 21%      | 4%                      |
| June                                  | 13,800           | 5,600  | 8,200    | 0                       | 41%        | 59%      | 0%                      |
| July                                  | 62,700           | 6,100  | 47,300   | 9,200                   | 10%        | 75%      | 15%                     |
| August                                | 66,900           | 6,100  | 48,200   | 12,500                  | 9%         | 72%      | 19%                     |
| September                             | 31,900           | 5,800  | 22,800   | 3,400                   | 18%        | 71%      | 11%                     |
| October                               | 11,200           | 4,000  | 6,100    | 900                     | 36%        | 54%      | 10%                     |
| Total                                 | 189,300          | 29,700 | 133,200  | 26,000                  | 16%        | 70%      | 14%                     |

| Scenario 2: 1,200 cfs Tunnel Capacity |                  |        |          |                         |            |          |                         |
|---------------------------------------|------------------|--------|----------|-------------------------|------------|----------|-------------------------|
| Month                                 | Volume (acre-ft) |        |          |                         | Percentage |          |                         |
|                                       | Total Runoff     | MIF    | Diverted | Bypass in Excess of MIF | MIF        | Diverted | Bypass in Excess of MIF |
| May                                   | 2,800            | 2,100  | 600      | 0                       | 75%        | 21%      | 4%                      |
| June                                  | 13,800           | 5,600  | 8,200    | 0                       | 41%        | 59%      | 0%                      |
| July                                  | 62,700           | 6,100  | 50,900   | 5,700                   | 10%        | 81%      | 9%                      |
| August                                | 66,900           | 6,100  | 52,100   | 8,700                   | 9%         | 78%      | 13%                     |
| September                             | 31,900           | 5,800  | 23,700   | 2,500                   | 18%        | 74%      | 8%                      |
| October                               | 11,200           | 4,000  | 6,400    | 700                     | 36%        | 57%      | 7%                      |
| Total                                 | 189,300          | 29,700 | 141,900  | 17,600                  | 16%        | 75%      | 9%                      |

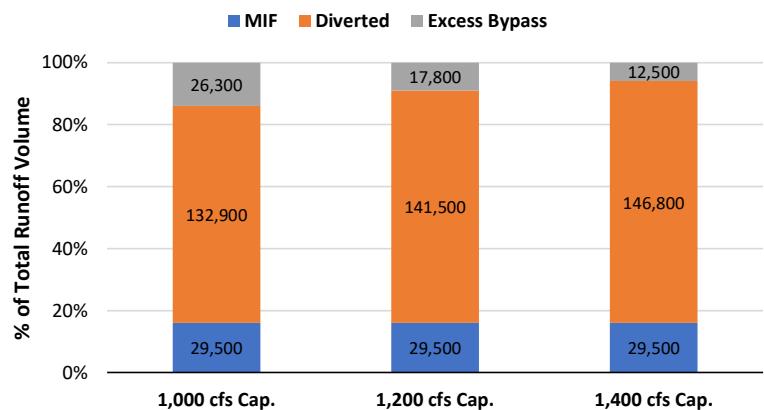
| Scenario 3: 1,400 cfs Tunnel Capacity |                  |        |          |                         |            |          |                         |
|---------------------------------------|------------------|--------|----------|-------------------------|------------|----------|-------------------------|
| Month                                 | Volume (acre-ft) |        |          |                         | Percentage |          |                         |
|                                       | Total Runoff     | MIF    | Diverted | Bypass in Excess of MIF | MIF        | Diverted | Bypass in Excess of MIF |
| May                                   | 2,800            | 2,100  | 600      | 0                       | 75%        | 21%      | 4%                      |
| June                                  | 13,800           | 5,600  | 8,200    | 0                       | 41%        | 59%      | 0%                      |
| July                                  | 62,700           | 6,100  | 53,100   | 3,500                   | 10%        | 85%      | 5%                      |
| August                                | 66,900           | 6,100  | 54,600   | 6,200                   | 9%         | 82%      | 9%                      |
| September                             | 31,900           | 5,800  | 24,300   | 1,900                   | 18%        | 76%      | 6%                      |
| October                               | 11,200           | 4,000  | 6,600    | 500                     | 36%        | 59%      | 5%                      |
| Total                                 | 189,300          | 29,700 | 147,400  | 12,100                  | 16%        | 78%      | 6%                      |

## OPERATIONAL MODEL

### USING SYNTHETIC RECORD

#### INPUT

##### Minimum Instream Flow (MIF)


|            |     |     |
|------------|-----|-----|
| May:       | 100 | cfs |
| June:      | 100 | cfs |
| July:      | 100 | cfs |
| August:    | 100 | cfs |
| September: | 100 | cfs |
| October:   | 100 | cfs |

##### Diversion Tunnel Capacity

|             |       |     |
|-------------|-------|-----|
| Scenario 1: | 1,000 | cfs |
| Scenario 2: | 1,200 | cfs |
| Scenario 3: | 1,400 | cfs |

##### Statistical Range

|             |      |
|-------------|------|
| Start Year: | 1983 |
| End Year:   | 2022 |



1,000 cfs Cap.      1,200 cfs Cap.      1,400 cfs Cap.

All Data       40-yr Record       30-yr Record       20-yr Record       10-yr Record

#### OUTPUT

| Scenario 1: 1,000 cfs Tunnel Capacity |                  |        |          |                         |            |          |                         |
|---------------------------------------|------------------|--------|----------|-------------------------|------------|----------|-------------------------|
| Month                                 | Volume (acre-ft) |        |          |                         | Percentage |          |                         |
|                                       | Total Runoff     | MIF    | Diverted | Bypass in Excess of MIF | MIF        | Diverted | Bypass in Excess of MIF |
| May                                   | 2,800            | 2,100  | 700      | 0                       | 75%        | 25%      | 0%                      |
| June                                  | 14,100           | 5,500  | 8,500    | 0                       | 39%        | 60%      | 1%                      |
| July                                  | 62,700           | 6,100  | 47,100   | 9,400                   | 10%        | 75%      | 15%                     |
| August                                | 66,800           | 6,100  | 48,000   | 12,600                  | 9%         | 72%      | 19%                     |
| September                             | 31,200           | 5,700  | 22,200   | 3,300                   | 18%        | 71%      | 11%                     |
| October                               | 11,600           | 4,000  | 6,400    | 1,000                   | 34%        | 55%      | 11%                     |
| Total                                 | 189,200          | 29,500 | 132,900  | 26,300                  | 16%        | 70%      | 14%                     |

##### Scenario 2: 1,200 cfs Tunnel Capacity

| Month     | Volume (acre-ft) |        |          |                         | Percentage |          |                         |
|-----------|------------------|--------|----------|-------------------------|------------|----------|-------------------------|
|           | Total Runoff     | MIF    | Diverted | Bypass in Excess of MIF | MIF        | Diverted | Bypass in Excess of MIF |
| May       | 2,800            | 2,100  | 700      | 0                       | 75%        | 25%      | 0%                      |
| June      | 14,100           | 5,500  | 8,500    | 0                       | 39%        | 60%      | 1%                      |
| July      | 62,700           | 6,100  | 50,700   | 5,900                   | 10%        | 81%      | 9%                      |
| August    | 66,800           | 6,100  | 51,800   | 8,800                   | 9%         | 78%      | 13%                     |
| September | 31,200           | 5,700  | 23,100   | 2,400                   | 18%        | 74%      | 8%                      |
| October   | 11,600           | 4,000  | 6,700    | 700                     | 34%        | 58%      | 8%                      |
| Total     | 189,200          | 29,500 | 141,500  | 17,800                  | 16%        | 75%      | 9%                      |

##### Scenario 3: 1,400 cfs Tunnel Capacity

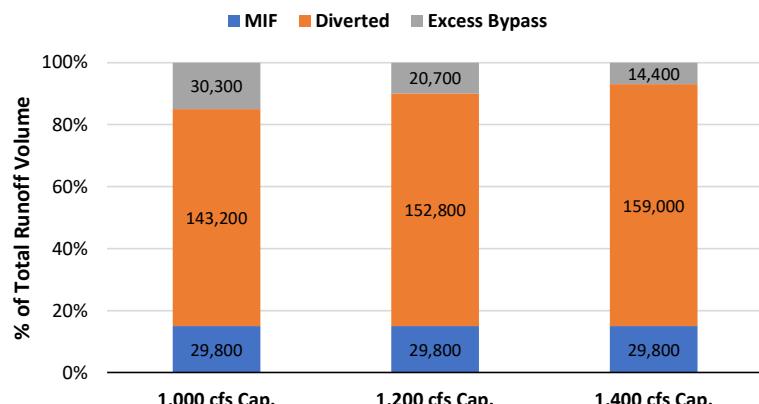
| Month     | Volume (acre-ft) |        |          |                         | Percentage |          |                         |
|-----------|------------------|--------|----------|-------------------------|------------|----------|-------------------------|
|           | Total Runoff     | MIF    | Diverted | Bypass in Excess of MIF | MIF        | Diverted | Bypass in Excess of MIF |
| May       | 2,800            | 2,100  | 700      | 0                       | 75%        | 25%      | 0%                      |
| June      | 14,100           | 5,500  | 8,500    | 0                       | 39%        | 60%      | 1%                      |
| July      | 62,700           | 6,100  | 52,900   | 3,700                   | 10%        | 84%      | 6%                      |
| August    | 66,800           | 6,100  | 54,200   | 6,400                   | 9%         | 81%      | 10%                     |
| September | 31,200           | 5,700  | 23,600   | 1,900                   | 18%        | 76%      | 6%                      |
| October   | 11,600           | 4,000  | 6,900    | 500                     | 34%        | 59%      | 7%                      |
| Total     | 189,200          | 29,500 | 146,800  | 12,500                  | 16%        | 78%      | 6%                      |

## OPERATIONAL MODEL

### USING SYNTHETIC RECORD

#### INPUT

##### Minimum Instream Flow (MIF)


|            |     |     |
|------------|-----|-----|
| May:       | 100 | cfs |
| June:      | 100 | cfs |
| July:      | 100 | cfs |
| August:    | 100 | cfs |
| September: | 100 | cfs |
| October:   | 100 | cfs |

##### Diversion Tunnel Capacity

|             |       |     |
|-------------|-------|-----|
| Scenario 1: | 1,000 | cfs |
| Scenario 2: | 1,200 | cfs |
| Scenario 3: | 1,400 | cfs |

##### Statistical Range

|             |      |
|-------------|------|
| Start Year: | 1993 |
| End Year:   | 2022 |



All Data  40-yr Record  30-yr Record  20-yr Record  10-yr Record

#### OUTPUT

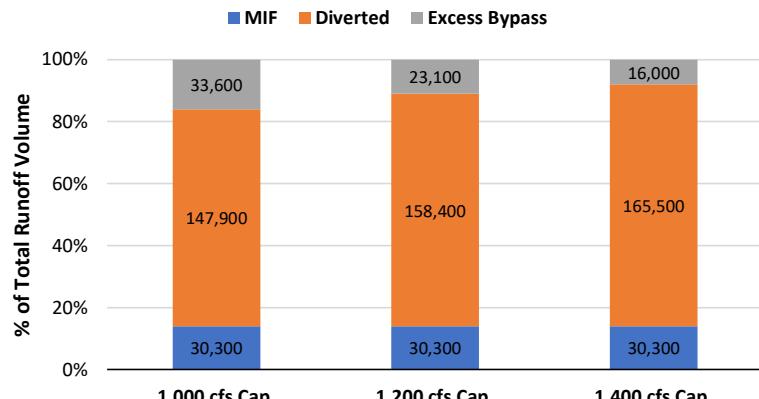
| Scenario 1: 1,000 cfs Tunnel Capacity |                  |        |          |                         |            |          |                         |
|---------------------------------------|------------------|--------|----------|-------------------------|------------|----------|-------------------------|
| Month                                 | Volume (acre-ft) |        |          |                         | Percentage |          |                         |
|                                       | Total Runoff     | MIF    | Diverted | Bypass in Excess of MIF | MIF        | Diverted | Bypass in Excess of MIF |
| May                                   | 2,900            | 2,200  | 700      | 0                       | 76%        | 24%      | 0%                      |
| June                                  | 15,100           | 5,600  | 9,500    | 0                       | 37%        | 63%      | 0%                      |
| July                                  | 69,500           | 6,100  | 51,300   | 12,100                  | 9%         | 74%      | 17%                     |
| August                                | 70,200           | 6,100  | 51,000   | 13,000                  | 9%         | 73%      | 18%                     |
| September                             | 33,000           | 5,800  | 23,300   | 4,000                   | 18%        | 71%      | 11%                     |
| October                               | 13,000           | 4,000  | 7,400    | 1,200                   | 31%        | 57%      | 12%                     |
| Total                                 | 203,700          | 29,800 | 143,200  | 30,300                  | 15%        | 70%      | 15%                     |

| Scenario 2: 1,200 cfs Tunnel Capacity |                  |        |          |                         |            |          |                         |
|---------------------------------------|------------------|--------|----------|-------------------------|------------|----------|-------------------------|
| Month                                 | Volume (acre-ft) |        |          |                         | Percentage |          |                         |
|                                       | Total Runoff     | MIF    | Diverted | Bypass in Excess of MIF | MIF        | Diverted | Bypass in Excess of MIF |
| May                                   | 2,900            | 2,200  | 700      | 0                       | 76%        | 24%      | 0%                      |
| June                                  | 15,100           | 5,600  | 9,500    | 0                       | 37%        | 63%      | 0%                      |
| July                                  | 69,500           | 6,100  | 55,700   | 7,700                   | 9%         | 80%      | 11%                     |
| August                                | 70,200           | 6,100  | 54,900   | 9,100                   | 9%         | 78%      | 13%                     |
| September                             | 33,000           | 5,800  | 24,200   | 3,000                   | 18%        | 73%      | 9%                      |
| October                               | 13,000           | 4,000  | 7,800    | 900                     | 31%        | 60%      | 9%                      |
| Total                                 | 203,700          | 29,800 | 152,800  | 20,700                  | 15%        | 75%      | 10%                     |

| Scenario 3: 1,400 cfs Tunnel Capacity |                  |        |          |                         |            |          |                         |
|---------------------------------------|------------------|--------|----------|-------------------------|------------|----------|-------------------------|
| Month                                 | Volume (acre-ft) |        |          |                         | Percentage |          |                         |
|                                       | Total Runoff     | MIF    | Diverted | Bypass in Excess of MIF | MIF        | Diverted | Bypass in Excess of MIF |
| May                                   | 2,900            | 2,200  | 700      | 0                       | 76%        | 24%      | 0%                      |
| June                                  | 15,100           | 5,600  | 9,500    | 0                       | 37%        | 63%      | 0%                      |
| July                                  | 69,500           | 6,100  | 58,500   | 4,900                   | 9%         | 84%      | 7%                      |
| August                                | 70,200           | 6,100  | 57,400   | 6,600                   | 9%         | 82%      | 9%                      |
| September                             | 33,000           | 5,800  | 24,900   | 2,300                   | 18%        | 75%      | 7%                      |
| October                               | 13,000           | 4,000  | 8,000    | 600                     | 31%        | 62%      | 7%                      |
| Total                                 | 203,700          | 29,800 | 159,000  | 14,400                  | 15%        | 78%      | 7%                      |

## OPERATIONAL MODEL

### USING SYNTHETIC RECORD


#### INPUT

##### Minimum Instream Flow (MIF)

|            |     |     |
|------------|-----|-----|
| May:       | 100 | cfs |
| June:      | 100 | cfs |
| July:      | 100 | cfs |
| August:    | 100 | cfs |
| September: | 100 | cfs |
| October:   | 100 | cfs |

##### Diversion Tunnel Capacity

|             |       |     |
|-------------|-------|-----|
| Scenario 1: | 1,000 | cfs |
| Scenario 2: | 1,200 | cfs |
| Scenario 3: | 1,400 | cfs |



##### Statistical Range

|             |      |
|-------------|------|
| Start Year: | 2003 |
| End Year:   | 2022 |

All Data  40-yr Record  30-yr Record  20-yr Record  10-yr Record

#### OUTPUT

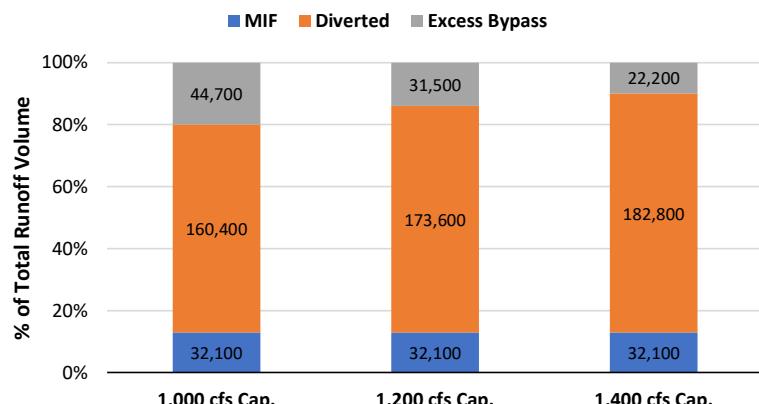
| Scenario 1: 1,000 cfs Tunnel Capacity |                  |        |          |                         |            |          |                         |
|---------------------------------------|------------------|--------|----------|-------------------------|------------|----------|-------------------------|
| Month                                 | Volume (acre-ft) |        |          |                         | Percentage |          |                         |
|                                       | Total Runoff     | MIF    | Diverted | Bypass in Excess of MIF | MIF        | Diverted | Bypass in Excess of MIF |
| May                                   | 3,600            | 2,600  | 1,000    | 0                       | 72%        | 28%      | 0%                      |
| June                                  | 16,500           | 5,700  | 10,800   | 0                       | 35%        | 65%      | 0%                      |
| July                                  | 72,700           | 6,100  | 52,800   | 13,800                  | 8%         | 73%      | 19%                     |
| August                                | 72,500           | 6,100  | 51,000   | 15,400                  | 8%         | 70%      | 22%                     |
| September                             | 32,000           | 5,700  | 23,300   | 2,900                   | 18%        | 73%      | 9%                      |
| October                               | 14,900           | 4,100  | 9,000    | 1,500                   | 28%        | 60%      | 12%                     |
| Total                                 | 212,200          | 30,300 | 147,900  | 33,600                  | 14%        | 70%      | 16%                     |

| Scenario 2: 1,200 cfs Tunnel Capacity |                  |        |          |                         |            |          |                         |
|---------------------------------------|------------------|--------|----------|-------------------------|------------|----------|-------------------------|
| Month                                 | Volume (acre-ft) |        |          |                         | Percentage |          |                         |
|                                       | Total Runoff     | MIF    | Diverted | Bypass in Excess of MIF | MIF        | Diverted | Bypass in Excess of MIF |
| May                                   | 3,600            | 2,600  | 1,000    | 0                       | 72%        | 28%      | 0%                      |
| June                                  | 16,500           | 5,700  | 10,800   | 0                       | 35%        | 65%      | 0%                      |
| July                                  | 72,700           | 6,100  | 57,700   | 8,900                   | 8%         | 79%      | 13%                     |
| August                                | 72,500           | 6,100  | 55,300   | 11,100                  | 8%         | 76%      | 16%                     |
| September                             | 32,000           | 5,700  | 24,200   | 2,100                   | 18%        | 76%      | 6%                      |
| October                               | 14,900           | 4,100  | 9,400    | 1,000                   | 28%        | 63%      | 9%                      |
| Total                                 | 212,200          | 30,300 | 158,400  | 23,100                  | 14%        | 75%      | 11%                     |

| Scenario 3: 1,400 cfs Tunnel Capacity |                  |        |          |                         |            |          |                         |
|---------------------------------------|------------------|--------|----------|-------------------------|------------|----------|-------------------------|
| Month                                 | Volume (acre-ft) |        |          |                         | Percentage |          |                         |
|                                       | Total Runoff     | MIF    | Diverted | Bypass in Excess of MIF | MIF        | Diverted | Bypass in Excess of MIF |
| May                                   | 3,600            | 2,600  | 1,000    | 0                       | 72%        | 28%      | 0%                      |
| June                                  | 16,500           | 5,700  | 10,800   | 0                       | 35%        | 65%      | 0%                      |
| July                                  | 72,700           | 6,100  | 61,000   | 5,600                   | 8%         | 84%      | 8%                      |
| August                                | 72,500           | 6,100  | 58,200   | 8,200                   | 8%         | 80%      | 12%                     |
| September                             | 32,000           | 5,700  | 24,800   | 1,500                   | 18%        | 78%      | 4%                      |
| October                               | 14,900           | 4,100  | 9,700    | 700                     | 28%        | 65%      | 7%                      |
| Total                                 | 212,200          | 30,300 | 165,500  | 16,000                  | 14%        | 78%      | 8%                      |

## OPERATIONAL MODEL

### USING SYNTHETIC RECORD


#### INPUT

##### Minimum Instream Flow (MIF)

|            |     |     |
|------------|-----|-----|
| May:       | 100 | cfs |
| June:      | 100 | cfs |
| July:      | 100 | cfs |
| August:    | 100 | cfs |
| September: | 100 | cfs |
| October:   | 100 | cfs |

##### Diversion Tunnel Capacity

|             |       |     |
|-------------|-------|-----|
| Scenario 1: | 1,000 | cfs |
| Scenario 2: | 1,200 | cfs |
| Scenario 3: | 1,400 | cfs |



##### Statistical Range

|             |      |
|-------------|------|
| Start Year: | 2013 |
| End Year:   | 2022 |

All Data  40-yr Record  30-yr Record  20-yr Record  10-yr Record

#### OUTPUT

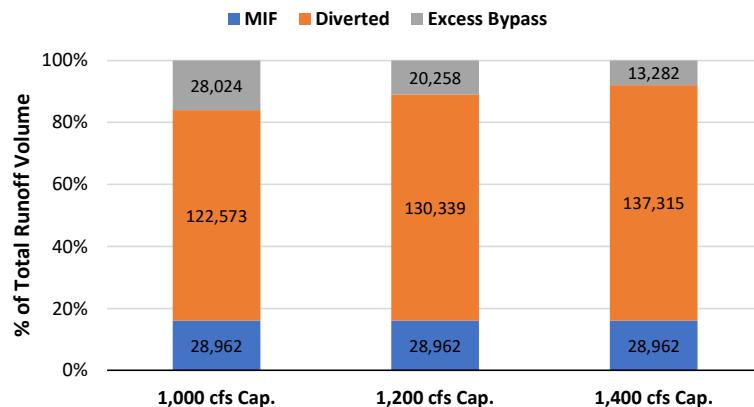
| Scenario 1: 1,000 cfs Tunnel Capacity |                  |        |          |                         |            |          |                         |
|---------------------------------------|------------------|--------|----------|-------------------------|------------|----------|-------------------------|
| Month                                 | Volume (acre-ft) |        |          |                         | Percentage |          |                         |
|                                       | Total Runoff     | MIF    | Diverted | Bypass in Excess of MIF | MIF        | Diverted | Bypass in Excess of MIF |
| May                                   | 6,200            | 4,300  | 1,900    | 0                       | 69%        | 31%      | 0%                      |
| June                                  | 19,000           | 5,900  | 13,000   | 0                       | 31%        | 68%      | 1%                      |
| July                                  | 79,800           | 6,100  | 56,200   | 17,500                  | 8%         | 70%      | 22%                     |
| August                                | 81,300           | 6,100  | 52,500   | 22,600                  | 8%         | 65%      | 27%                     |
| September                             | 35,000           | 5,700  | 25,700   | 3,500                   | 16%        | 73%      | 11%                     |
| October                               | 17,200           | 4,000  | 11,100   | 1,100                   | 23%        | 65%      | 12%                     |
| Total                                 | 238,500          | 32,100 | 160,400  | 44,700                  | 13%        | 67%      | 20%                     |

| Scenario 2: 1,200 cfs Tunnel Capacity |                  |        |          |                         |            |          |                         |
|---------------------------------------|------------------|--------|----------|-------------------------|------------|----------|-------------------------|
| Month                                 | Volume (acre-ft) |        |          |                         | Percentage |          |                         |
|                                       | Total Runoff     | MIF    | Diverted | Bypass in Excess of MIF | MIF        | Diverted | Bypass in Excess of MIF |
| May                                   | 6,200            | 4,300  | 1,900    | 0                       | 69%        | 31%      | 0%                      |
| June                                  | 19,000           | 5,900  | 13,000   | 0                       | 31%        | 68%      | 1%                      |
| July                                  | 79,800           | 6,100  | 62,200   | 11,400                  | 8%         | 78%      | 14%                     |
| August                                | 81,300           | 6,100  | 58,000   | 17,200                  | 8%         | 71%      | 21%                     |
| September                             | 35,000           | 5,700  | 26,900   | 2,300                   | 16%        | 77%      | 7%                      |
| October                               | 17,200           | 4,000  | 11,600   | 600                     | 23%        | 67%      | 10%                     |
| Total                                 | 238,500          | 32,100 | 173,600  | 31,500                  | 13%        | 73%      | 14%                     |

| Scenario 3: 1,400 cfs Tunnel Capacity |                  |        |          |                         |            |          |                         |
|---------------------------------------|------------------|--------|----------|-------------------------|------------|----------|-------------------------|
| Month                                 | Volume (acre-ft) |        |          |                         | Percentage |          |                         |
|                                       | Total Runoff     | MIF    | Diverted | Bypass in Excess of MIF | MIF        | Diverted | Bypass in Excess of MIF |
| May                                   | 6,200            | 4,300  | 1,900    | 0                       | 69%        | 31%      | 0%                      |
| June                                  | 19,000           | 5,900  | 13,000   | 0                       | 31%        | 68%      | 1%                      |
| July                                  | 79,800           | 6,100  | 66,500   | 7,100                   | 8%         | 83%      | 9%                      |
| August                                | 81,300           | 6,100  | 61,900   | 13,200                  | 8%         | 76%      | 16%                     |
| September                             | 35,000           | 5,700  | 27,600   | 1,600                   | 16%        | 79%      | 5%                      |
| October                               | 17,200           | 4,000  | 11,900   | 300                     | 23%        | 69%      | 8%                      |
| Total                                 | 238,500          | 32,100 | 182,800  | 22,200                  | 13%        | 77%      | 10%                     |

## OPERATIONAL MODEL

### USING 2023 MEASUREMENTS - MISSING OCTOBER DATA


#### INPUT

##### Minimum Instream Flow (MIF)

|            |     |     |
|------------|-----|-----|
| May:       | 100 | cfs |
| June:      | 100 | cfs |
| July:      | 100 | cfs |
| August:    | 100 | cfs |
| September: | 100 | cfs |
| October:   | 100 | cfs |

##### Diversion Tunnel Capacity

|             |       |     |
|-------------|-------|-----|
| Scenario 1: | 1,000 | cfs |
| Scenario 2: | 1,200 | cfs |
| Scenario 3: | 1,400 | cfs |



#### OUTPUT

##### Scenario 1: 1,000 cfs Tunnel Capacity

| Month     | Volume (acre-ft) |        |          |                         | Percentage |          |                         |
|-----------|------------------|--------|----------|-------------------------|------------|----------|-------------------------|
|           | Total Runoff     | MIF    | Diverted | Bypass in Excess of MIF | MIF        | Diverted | Bypass in Excess of MIF |
| May       | 9,267            | 5,654  | 3,613    | 0                       | 61%        | 39%      | 0%                      |
| June      | 21,514           | 5,949  | 15,565   | 0                       | 28%        | 72%      | 0%                      |
| July      | 54,416           | 6,147  | 43,336   | 4,932                   | 11%        | 80%      | 9%                      |
| August    | 81,807           | 6,147  | 52,567   | 23,092                  | 8%         | 64%      | 28%                     |
| September | 12,556           | 5,065  | 7,492    | 0                       | 40%        | 60%      | 0%                      |
| October   |                  |        |          |                         |            |          |                         |
| Total     | 179,559          | 28,962 | 122,573  | 28,024                  | 16%        | 68%      | 16%                     |

##### Scenario 2: 1,200 cfs Tunnel Capacity

| Month     | Volume (acre-ft) |        |          |                         | Percentage |          |                         |
|-----------|------------------|--------|----------|-------------------------|------------|----------|-------------------------|
|           | Total Runoff     | MIF    | Diverted | Bypass in Excess of MIF | MIF        | Diverted | Bypass in Excess of MIF |
| May       | 9,267            | 5,654  | 3,613    | 0                       | 61%        | 39%      | 0%                      |
| June      | 21,514           | 5,949  | 15,565   | 0                       | 28%        | 72%      | 0%                      |
| July      | 54,416           | 6,147  | 45,542   | 2,727                   | 11%        | 84%      | 5%                      |
| August    | 81,807           | 6,147  | 58,128   | 17,532                  | 8%         | 71%      | 21%                     |
| September | 12,556           | 5,065  | 7,492    | 0                       | 40%        | 60%      | 0%                      |
| October   |                  |        |          |                         |            |          |                         |
| Total     | 179,559          | 28,962 | 130,339  | 20,258                  | 16%        | 73%      | 11%                     |

##### Scenario 3: 1,400 cfs Tunnel Capacity

| Month     | Volume (acre-ft) |        |          |                         | Percentage |          |                         |
|-----------|------------------|--------|----------|-------------------------|------------|----------|-------------------------|
|           | Total Runoff     | MIF    | Diverted | Bypass in Excess of MIF | MIF        | Diverted | Bypass in Excess of MIF |
| May       | 9,267            | 5,654  | 3,613    | 0                       | 61%        | 39%      | 0%                      |
| June      | 21,514           | 5,949  | 15,565   | 0                       | 28%        | 72%      | 0%                      |
| July      | 54,416           | 6,147  | 47,233   | 1,035                   | 11%        | 87%      | 2%                      |
| August    | 81,807           | 6,147  | 63,412   | 12,247                  | 8%         | 78%      | 14%                     |
| September | 12,556           | 5,065  | 7,492    | 0                       | 40%        | 60%      | 0%                      |
| October   |                  |        |          |                         |            |          |                         |
| Total     | 179,559          | 28,962 | 137,315  | 13,282                  | 16%        | 76%      | 8%                      |